Novel statistical methods and tools to integrate multiple endophenotypes and functional annotation data to study the roles of rare variants in complex human diseases using sequencing data
整合多种内表型和功能注释数据的新颖统计方法和工具,利用测序数据研究罕见变异在复杂人类疾病中的作用
基本信息
- 批准号:10631039
- 负责人:
- 金额:$ 30.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBasic ScienceBiologicalCardiometabolic DiseaseCardiovascular DiseasesClinical ResearchComplexComputer softwareDataDevelopmentDiseaseFrequenciesGenesGeneticGenetic studyGenome ScanHeritabilityHumanKnowledgeLarge-Scale SequencingMachine LearningMeasuresMeta-AnalysisMetabolic DiseasesMethodsModelingNational Heart, Lung, and Blood InstituteOutcomePhenotypePlayPrevention strategyPublic HealthResearchResearch PersonnelRoleSamplingScientistSourceStatistical MethodsStatistical ModelsTestingTimeTrans-Omics for Precision MedicineTranslationsVariantWorkanalytical toolbiobankcardiometabolismclinical diagnosiscohortcomputerized toolscost effectivedata integrationdesigndisease diagnosiseffective therapyendophenotypeexome sequencingexperiencegenetic architecturegenetic variantgenome sequencinggenome wide association studygenome-widehuman diseaseimprovedinsightnovelprogramsrare varianttooltraittreatment strategyweb sitewhole genome
项目摘要
Project Summary
In the past fifteen years, great efforts have been made to understand the genetic architecture of complex
human diseases through genome-wide association studies. Although many genome-wide significant variants
have been identified, the heritability or variance explained by these variants remains very small, suggesting
substantial missing heritability that may yet be explained by common genetic variants with smaller effect sizes
and/or rare and low frequency variants, which calls for the development and application of novel statistical
methods to whole genome/exome sequencing data collected from deeply phenotyped cohorts. In this project,
we will develop methods that leverage multiple correlated endophenotypes and further integrate functional
annotation data to identify novel rare variants for complex traits. We will develop a set of new computational
and analytical tools that are practically useful and broadly applicable to general sequencing studies, and the
applications of our methods will likely identity novel rare variant associations and shed new lights on the
genetics of cardiometabolic diseases.
In Aim 1, we propose to develop novel statistical methods to integrate multiple endophenotypes to study the
impact of rare variants on complex human diseases. Our methods will fill in the gap between the current
practice of association studies and the practical needs of integrating endophenotypes for improved
understanding and diagnosis of clinical outcomes. In Aim 2, we will extend the methods to meta-analyses
across studies. In Aim 3, we will develop a novel kernel machine learning approach to integrating various
functional information to annotate the whole genome region, and further integrate them to develop a dynamic
whole-genome scan test to detect rare variant associations with multiple endophenotypes. We will leverage the
NHLBI TOPMed whole genome sequencing (WGS) data and the UK Biobank whole exome sequencing (WES)
data, and integrate the functional annotation data to identify and dissect the role of rare variants on the
cardiometabolic traits (Aim 4). Our proposed work is cost-effective as it leverages the existing WGS/WES
samples and functional annotation data while providing methods and tools that are broadly applicable to other
studies, and builds on a strong team of scientists with proven track record in statistical genetics, large-scale
genetic studies, and cardiometabolic traits. We expect our methods will lead to the discoveries of many more
rare and low frequency variants for these traits. These results will offer new insights to help design more
effective treatment and prevention strategies. All our proposed methods will be disseminated to the public
through well-tested and publicly available software (Aim 5).
项目摘要
在过去的十五年里,人们做了大量的努力来了解复杂的遗传结构,
人类疾病通过全基因组关联研究。尽管许多基因组范围内的重要变异
已经确定,这些变异解释的遗传力或方差仍然很小,这表明
大量缺失的遗传力可能还可以用具有较小效应量的常见遗传变异来解释
和/或罕见和低频变异,这需要开发和应用新的统计方法,
方法对从深度表型化队列收集的全基因组/外显子组测序数据进行分析。在这个项目中,
我们将开发利用多种相关内表型的方法,并进一步整合功能性
注释数据以鉴定复杂性状的新的罕见变体。我们将开发一套新的计算
和分析工具,实际上是有用的,并广泛适用于一般测序研究,
我们的方法的应用可能会识别新的罕见变异关联,并为基因组学提供新的线索。
心脏代谢疾病的遗传学。
在目标1中,我们提出开发新的统计方法来整合多种内表型,以研究
罕见变异对复杂人类疾病的影响。我们的方法将填补目前的差距
关联研究的实践和整合内表型的实际需要,
了解和诊断临床结果。在目标2中,我们将把这些方法扩展到荟萃分析
跨研究。在目标3中,我们将开发一种新的内核机器学习方法来集成各种
功能信息来注释整个基因组区域,并进一步整合它们以开发动态的
全基因组扫描测试,以检测与多种内表型相关的罕见变异。我们将利用
NHLBI TOPM全基因组测序(WGS)数据和UK Biobank全外显子组测序(WES)
数据,并整合功能注释数据,以识别和剖析罕见变异对
心脏代谢特征(目标4)。我们建议的工作具有成本效益,因为它利用了现有的WGS/WES
示例和功能注释数据,同时提供广泛适用于其他
研究,并建立在一个强大的科学家团队,在统计遗传学,大规模
基因研究和心脏代谢特征我们希望我们的方法能带来更多的发现
这些性状的罕见和低频率变异。这些结果将提供新的见解,以帮助设计更多
有效的治疗和预防策略。我们提出的所有方法都将向公众传播
通过经过良好测试和公开可用的软件(目标5)。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genomic risk prediction of cardiovascular diseases among type 2 diabetes patients in the UK Biobank.
- DOI:10.3389/fbinf.2023.1320748
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ye, Yixuan;Hu, Jiaqi;Pang, Fuyuan;Cui, Can;Zhao, Hongyu
- 通讯作者:Zhao, Hongyu
A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.
- DOI:10.1371/journal.pgen.1009697
- 发表时间:2021-07
- 期刊:
- 影响因子:4.5
- 作者:Zhou G;Zhao H
- 通讯作者:Zhao H
M-DATA: A statistical approach to jointly analyzing de novo mutations for multiple traits.
- DOI:10.1371/journal.pgen.1009849
- 发表时间:2021-11
- 期刊:
- 影响因子:4.5
- 作者:Xie Y;Li M;Dong W;Jiang W;Zhao H
- 通讯作者:Zhao H
Variance Estimation and Confidence Intervals from Genome-wide Association Studies Through High-dimensional Misspecified Mixed Model Analysis.
- DOI:10.1016/j.jspi.2022.01.003
- 发表时间:2022-09
- 期刊:
- 影响因子:0.9
- 作者:Dao, Cecilia;Jiang, Jiming;Paul, Debashis;Zhao, Hongyu
- 通讯作者:Zhao, Hongyu
Quantifying concordant genetic effects of de novo mutations on multiple disorders.
- DOI:10.7554/elife.75551
- 发表时间:2022-06-06
- 期刊:
- 影响因子:7.7
- 作者:Guo, Hanmin;Hou, Lin;Shi, Yu;Jin, Sheng Chih;Zeng, Xue;Li, Boyang;Lifton, Richard P.;Brueckner, Martina;Zhao, Hongyu;Lu, Qiongshi
- 通讯作者:Lu, Qiongshi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baolin Wu其他文献
Baolin Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baolin Wu', 18)}}的其他基金
Novel statistical methods and tools to integrate multiple endophenotypes and functional annotation data to study the roles of rare variants in complex human diseases using sequencing data
整合多种内表型和功能注释数据的新颖统计方法和工具,利用测序数据研究罕见变异在复杂人类疾病中的作用
- 批准号:
10372265 - 财政年份:2020
- 资助金额:
$ 30.81万 - 项目类别:
Novel statistical methods and tools to integrate multiple endophenotypes and functional annotation data to study the roles of rare variants in complex human diseases using sequencing data
整合多种内表型和功能注释数据的新颖统计方法和工具,利用测序数据研究罕见变异在复杂人类疾病中的作用
- 批准号:
10161796 - 财政年份:2020
- 资助金额:
$ 30.81万 - 项目类别:
Novel statistical methods and tools to integrate multiple endophenotypes and functional annotation data to study the roles of rare variants in complex human diseases using sequencing data
整合多种内表型和功能注释数据的新颖统计方法和工具,利用测序数据研究罕见变异在复杂人类疾病中的作用
- 批准号:
10398133 - 财政年份:2020
- 资助金额:
$ 30.81万 - 项目类别:
Statistical methods for large-scale significance and prediction analysis with app
使用应用程序进行大规模显着性和预测分析的统计方法
- 批准号:
7649099 - 财政年份:2009
- 资助金额:
$ 30.81万 - 项目类别:
Statistical Model Building for High Dimensional Biomedical Data
高维生物医学数据统计模型构建
- 批准号:
7386333 - 财政年份:2008
- 资助金额:
$ 30.81万 - 项目类别:
Statistical Model Building for High Dimensional Biomedical Data
高维生物医学数据统计模型构建
- 批准号:
7858165 - 财政年份:2008
- 资助金额:
$ 30.81万 - 项目类别:
Statistical Model Building for High Dimensional Biomedical Data
高维生物医学数据统计模型构建
- 批准号:
7666186 - 财政年份:2008
- 资助金额:
$ 30.81万 - 项目类别:
Statistical Model Building for High Dimensional Biomedical Data
高维生物医学数据统计模型构建
- 批准号:
8079474 - 财政年份:2008
- 资助金额:
$ 30.81万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 30.81万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 30.81万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 30.81万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 30.81万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 30.81万 - 项目类别:
Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 30.81万 - 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 30.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 30.81万 - 项目类别: