Empower treatment effects evaluation of randomized clinical trials for elderly patients with integrated real-world data

利用综合的真实世界数据,对老年患者的随机临床试验的治疗效果进行评估

基本信息

  • 批准号:
    10634549
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Randomized clinical trials (RCTs) are the gold-standard method of evaluating cancer treatment, which has immense health and economic burdens worldwide. However, practical considerations that allow an RCT to be conducted typically require a relatively small sample size and restricted eligibility criteria such that the study has inadequate power to generalize treatment effects to elderly patients or other under-represented patient pop- ulations. On the other hand, massive real-world data (RWD) are increasingly captured by population-based databases and registries, such as Surveillance, Epidemiology, and End Results (SEER), SEER-Medicare, and National Cancer Database (NCDB), that have much broader demographic and clinical diversity compared to RCT cohorts. Treatment evaluation using causal inference methods and RWD that were not collected purely for re- search purposes is now frequently performed but fraught with limitations such as confounding due to lack of randomization. In fact, the agreement between RCT and RWD findings is often low in the analysis of matched RCT and RWD studies with the same treatment comparisons. Although several national organizations and reg- ulatory agencies have advocated using RWD to complement RCTs, methods that integrate these two potentially complementary data sources and achieve better treatment evaluation over the use of a single data source alone have yet to be developed. This proposal is motivated by the PIs' collaborative work to study the safety and efficacy of treatment strategies for elderly non-small cell lung cancer (NSCLC) and esophageal cancer patients by integrating data from multiple sources: RCTs from NCI cooperative groups and the real-world databases (e.g. SEER, SEER-Medicare, and NCDB). The objective of this project is to develop new statistical methods for integrative analyses of RCTs and RWD that can improve the generalizability and increase estimation efficiency of RCT findings to more diverse "real-world" patients as well as under-studied populations while avoiding confounding bias inherent in RWD. In Aim 1, we develop methods for statistical analysis of RCT data to compare chemoradiotherapy patterns for the real-world and elderly NSCLC patients by leveraging the baseline covariates of comparable patients from SEER, for whom the temporal information of chemotherapy and radiation and the outcome are both missing. Aims 2 and 3 focus on the settings when both RCT and RWD provide comparable covariates, treatment, and outcome information. In Aim 2, we develop improved analysis of RCT data to evaluate trimodality therapy versus surgery alone for the real-world and elderly esophageal cancer patients by exploiting the large sample size and predictive power offered by the NCDB/SEER-Medicare. In Aim 3, we develop new efficient and data-adaptive methods to estimate individualized treatment effects of adjuvant chemotherapy versus observation, possibly modified by age and tumor size, for stage IB resected NSCLC patients by integrating RCT and NCDB data.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RWD-INTEGRATED RANDOMIZED CLINICAL TRIAL ANALYSIS.
RWD 综合随机临床试验分析。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang,Shu;Wang,Xiaofei
  • 通讯作者:
    Wang,Xiaofei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofei Wang其他文献

Xiaofei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofei Wang', 18)}}的其他基金

Methods to improve efficiency and robustness of clinical trials using information from real-world data with hidden bias
使用来自真实世界数据的信息(具有隐藏偏差)提高临床试验的效率和稳健性的方法
  • 批准号:
    10797500
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Empower treatment effects evaluation of randomized clinical trials for elderly patients with integrated real-world data
利用综合的真实世界数据,对老年患者的随机临床试验的治疗效果进行评估
  • 批准号:
    10402256
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
Project 2: Fetuin-A in Prostate Cancer
项目 2:胎球蛋白-A 在前列腺癌中的作用
  • 批准号:
    10493441
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
Project 2: Fetuin-A in Prostate Cancer
项目 2:胎球蛋白-A 在前列腺癌中的作用
  • 批准号:
    10327838
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
COURSEWORK: BIOL 4112/4113 BIOINFORMATICS SPRING 2009
课程:BIOL 4112/4113 生物信息学 2009 年春季
  • 批准号:
    8171950
  • 财政年份:
    2010
  • 资助金额:
    $ 38万
  • 项目类别:
COURSEWORK: BIOL 4112/4113 BIOINFORMATICS SPRING 2009
课程:BIOL 4112/4113 生物信息学 2009 年春季
  • 批准号:
    7956378
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
Semiparametric ROC Curve Regression for Cancer Screening Studies
癌症筛查研究的半参数 ROC 曲线回归
  • 批准号:
    7501410
  • 财政年份:
    2007
  • 资助金额:
    $ 38万
  • 项目类别:
Semiparametric ROC Curve Regression for Cancer Screening Studies
癌症筛查研究的半参数 ROC 曲线回归
  • 批准号:
    7361616
  • 财政年份:
    2007
  • 资助金额:
    $ 38万
  • 项目类别:

相似海外基金

3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
  • 批准号:
    10315227
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
  • 批准号:
    443988
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
  • 批准号:
    20K09011
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
  • 批准号:
    19K09130
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
  • 批准号:
    19K18225
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
  • 批准号:
    18K16337
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
  • 批准号:
    10005254
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
  • 批准号:
    9763320
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
  • 批准号:
    18K07341
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了