PREMIERE: A PREdictive Model Index and Exchange REpository
PREMIERE:预测模型索引和交换存储库
基本信息
- 批准号:10668938
- 负责人:
- 金额:$ 67.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccess to InformationAddressAlgorithmsAreaAttentionBayesian NetworkBig DataBiological MarkersCalibrationCharacteristicsClinicalCommunitiesComputational BiologyComputer softwareDataData ScienceData SetData SourcesDecision MakingDecision TreesDermatologyDevelopmentDiagnosisDiagnosticDiagnostic ImagingEcosystemEducational workshopElectronic Health RecordEnvironmentEvaluationFAIR principlesFosteringFoundationsGoalsHumanImageImage AnalysisInformaticsLanguageLinkLiteratureMachine LearningMeasuresMedicalMetadataMethodologyMethodsModelingNatureOphthalmologyParameter EstimationPathway interactionsPerformancePopulationProliferatingPublicationsPublishingRadiology SpecialtyReceiver Operating CharacteristicsReportingReproducibilityReproductionResearch PersonnelRisk AssessmentSourceTechniquesTestingTrainingValidationVariantWorkbiomarker discoverybiomedical imagingcase-basedcohortcollaborative environmentcomparativecomputer aided detectionconvolutional neural networkdata harmonizationdata sharingdeep learningdeep learning modeldesignexperiencefeature selectionimprovedindexinginnovationinsightinterestinteroperabilitylearning networklung basal segmentlung cancer screeningmHealthmachine learning methodmachine learning predictionmodel developmentnovelnovel strategiesonline repositorypredictive modelingprognosticrepositorysoftware repositorystatistical and machine learningstatisticsstemtoolweb portal
项目摘要
The confluence of new machine learning (ML) data-driven approaches; increased computational power; and
access to the wealth of electronic health records (EHRs) and other emergent types of data (e.g., omics, imaging,
mHealth) are accelerating the development of biomedical predictive models. Such models range from traditional
statistical approaches (e.g., regression) through to more advanced deep learning techniques (e.g., convolutional
neural networks, CNNs), and span different tasks (e.g., biomarker/pathway discovery, diagnostic, prognostic).
Two issues have become evident: 1) as there are no comprehensive standards to support the dissemination of
these models, scientific reproducibility is problematic, given challenges in interpretation and implementation; and
2) as new models are put forth, methods to assess differences in performance, as well as insights into external
validity (i.e., transportability), are necessary. Tools moving beyond the sharing of data and model “executables”
are needed, capturing the (meta)data necessary to fully reproduce a model and its evaluation.
The objective of this R01 is the development of an informatics standard supporting the requisite information for
scientific reproducibility for statistical and ML-based biomedical predictive models; from this foundation, we then
develop new computational approaches to compare models' performance. We begin by extending the current
Predictive Model Markup Language (PMML) standard to fully characterize biomedical datasets and harmonize
variable definitions; to elucidate the algorithms involved in model creation (e.g., data preprocessing, parameter
estimation); and to explain the validation methodology. Importantly, models in this PMML format will become
findable, accessible, interoperable, and reusable (i.e., following FAIR principles). We then propose novel meth-
ods to compare and contrast predictive models, assessing transportability across datasets. While metrics exist
for comparing models (e.g., c-statistics, calibration), often the required case-level information is not available to
calculate these measures. We thus introduce an approach to simulate cases based on a model's reported da-
taset statistics, enabling such calculations. Different levels of transportability are then assigned to the metrics,
determining the extent to which a selected model is applicable to a given population/cohort (i.e., helping answer
the question, can I use this published model with my own data?). We tie these efforts together in our proposed
framework, the PREdictive Model Index & Exchange REpository (PREMIERE). We will develop an online portal
and repository for model sharing around PREMIERE, and our efforts will include fostering a community of users
to guide its development through workshops, model-thons, and other activities. To demonstrate these efforts,
we will bootstrap PREMIERE with predictive models from a targeted domain (risk assessment in imaging-based
lung cancer screening). Our efforts to evaluate these developments will engage a range of stakeholders (model
developers, users) to inform the completeness of our standard; and biostatisticians and clinical experts to guide
assessment of model transportability.
新的机器学习(ML)数据驱动方法的融合;增加的计算能力;以及
访问丰富的电子健康记录(EHR)和其他紧急类型的数据(例如,组学,成像,
mHealth)正在加速生物医学预测模型的发展。这些模型包括传统的
统计方法(例如,回归)到更高级的深度学习技术(例如,卷积
神经网络,CNN),并且跨越不同的任务(例如,生物标志物/途径发现、诊断、预后)。
有两个问题变得明显:1)由于没有全面的标准来支持传播
鉴于这些模型在解释和实施方面的挑战,科学再现性是有问题的;
2)随着新模型的提出,评估绩效差异的方法,以及对外部环境的洞察力,
有效性(即,运输能力)是必要的。超越数据共享和模型"可执行文件"的工具
捕获完全再现模型及其评估所需的(元)数据。
本R01的目标是制定一个信息学标准,支持以下方面的必要信息:
统计和基于ML的生物医学预测模型的科学再现性;从这个基础上,我们然后
开发新的计算方法来比较模型的性能。我们开始通过延长电流
预测模型标记语言(PMML)标准,用于充分表征生物医学数据集,
变量定义;阐明模型创建中涉及的算法(例如,数据预处理,参数
估计);并解释验证方法。重要的是,这种PMML格式的模型将成为
可查找、可访问、可互操作和可重用(即,遵循公平原则)。我们提出一种新的冰毒-
ODS比较和对比预测模型,评估数据集之间的可移植性。虽然存在度量标准,
为了比较模型(例如,c-统计,校准),通常无法获得所需的案例级信息,
计算这些措施。因此,我们介绍了一种方法来模拟的情况下,模型的报告数据的基础上,
taset统计,使这种计算。然后将不同级别的可移植性分配给度量,
确定所选模型适用于给定群体/群组的程度(即,帮助解答
问题是,我可以将这个发布的模型与我自己的数据一起使用吗?)。我们将这些努力结合在一起,
Predictive Model Index & Exchange REpository(PREMIERE)我们将开发一个在线门户网站
以及围绕PREMIERE共享模型的存储库,我们的努力将包括培养用户社区
通过讲习班、示范和其他活动指导其发展。为了证明这些努力,
我们将引导PREMIERE使用来自目标领域的预测模型(基于成像的风险评估
肺癌筛查)。我们评估这些发展的努力将吸引一系列利益相关者(模型
开发人员、用户)告知我们标准的完整性;生物统计学家和临床专家指导
模型可运输性评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prevention of Bias and Discrimination in Clinical Practice Algorithms.
预防临床实践算法中的偏见和歧视。
- DOI:10.1001/jama.2022.23867
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shachar,Carmel;Gerke,Sara
- 通讯作者:Gerke,Sara
How AI can learn from the law: putting humans in the loop only on appeal.
- DOI:10.1038/s41746-023-00906-8
- 发表时间:2023-08-25
- 期刊:
- 影响因子:15.2
- 作者:
- 通讯作者:
Health Care AI and Patient Privacy-Dinerstein v Google.
医疗保健人工智能和患者隐私 - Dinerstein 诉 Google。
- DOI:10.1001/jama.2024.1110
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Duffourc,MindyNunez;Gerke,Sara
- 通讯作者:Gerke,Sara
Artificial intelligence tools in clinical neuroradiology: essential medico-legal aspects.
- DOI:10.1007/s00234-023-03152-7
- 发表时间:2023-07
- 期刊:
- 影响因子:2.8
- 作者:Hedderich, Dennis M.;Weisstanner, Christian;Van Cauter, Sofie;Federau, Christian;Edjlali, Myriam;Radbruch, Alexander;Gerke, Sara;Haller, Sven
- 通讯作者:Haller, Sven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10707881 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 67.35万 - 项目类别:
相似海外基金
Improving access to information in perinatal women: Creating and piloting a needs-based information tools
改善围产期妇女获取信息的机会:创建和试点基于需求的信息工具
- 批准号:
23K16469 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is Better Access to Information Effective in Improving Labor Market Outcomes? Experimental Evidence
更好地获取信息是否能有效改善劳动力市场成果?
- 批准号:
1954016 - 财政年份:2019
- 资助金额:
$ 67.35万 - 项目类别:
Standard Grant
Collaborative Research: CESER: EAGER: "FabWave" - A Pilot Manufacturing Cyberinfrastructure for Shareable Access to Information Rich Product Manufacturing Data
合作研究:CESER:EAGER:“FabWave”——用于共享访问信息丰富的产品制造数据的试点制造网络基础设施
- 批准号:
1812687 - 财政年份:2018
- 资助金额:
$ 67.35万 - 项目类别:
Standard Grant
Collaborative Research: CESER: EAGER: "FabWave" - A Pilot Manufacturing Cyberinfrastructure for Shareable Access to Information Rich Product Manufacturing Data
合作研究:CESER:EAGER:“FabWave”——用于共享访问信息丰富的产品制造数据的试点制造网络基础设施
- 批准号:
1812675 - 财政年份:2018
- 资助金额:
$ 67.35万 - 项目类别:
Standard Grant
Is Better Access to Information Effective in Improving Labor Market Outcomes? Experimental Evidence
更好地获取信息是否能有效改善劳动力市场成果?
- 批准号:
1824465 - 财政年份:2018
- 资助金额:
$ 67.35万 - 项目类别:
Standard Grant
Index Herbariorum Upgrade: A Project to Improve Access to Information about the World's Plant and Fungal Collections Assets
Index Herbariorum 升级:改善获取世界植物和真菌收藏资产信息的项目
- 批准号:
1600051 - 财政年份:2016
- 资助金额:
$ 67.35万 - 项目类别:
Standard Grant
TC: Large: Collaborative Research: Facilitating Free and Open Access to Information on the Internet
TC:大型:合作研究:促进互联网上信息的自由和开放获取
- 批准号:
1540066 - 财政年份:2015
- 资助金额:
$ 67.35万 - 项目类别:
Continuing Grant
INEQUALITY IN HIGHER EDUCATION OUTCOMES IN THE UK: SUBJECTIVE EXPECTATIONS, PREFERENCES, AND ACCESS TO INFORMATION
英国高等教育成果的不平等:主观期望、偏好和信息获取
- 批准号:
ES/M008622/1 - 财政年份:2015
- 资助金额:
$ 67.35万 - 项目类别:
Research Grant
Collaborative Access to Information about Physical Objects via See-Through Displays
通过透视显示器协作访问有关物理对象的信息
- 批准号:
413142-2011 - 财政年份:2013
- 资助金额:
$ 67.35万 - 项目类别:
Strategic Projects - Group
Study on the social system for guaranteeing equal access to information in Scandinavia as human rights protection system
斯堪的纳维亚地区保障平等信息的社会制度作为人权保障制度的研究
- 批准号:
24530777 - 财政年份:2012
- 资助金额:
$ 67.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)