Molecular Mechanisms Underlying Recombination at DNA Double-Strand Breaks and Stalled Replication Forks
DNA 双链断裂和停滞复制叉重组的分子机制
基本信息
- 批准号:10670267
- 负责人:
- 金额:$ 78.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AppearanceBiologicalBiological ModelsBiological ProcessCellsCellular biologyChromosomesClustered Regularly Interspaced Short Palindromic RepeatsDNADNA DamageDNA Double Strand BreakDNA RepairDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseDiploid CellsDiseaseDisease modelDouble Strand Break RepairExcisionGamma RaysGenesGeneticGenetic RecombinationGenomeGenomic InstabilityHomologous GeneHumanImmunoglobulin Switch RecombinationLesionMalignant NeoplasmsMeasuresMessenger RNAMethodsMolecularMolecular BiologyMovementMutationOrganismProcessProteinsRoleSMARCA3 geneSiteSourceSystemTechniquesTimeVisualizationYeastsassaultcancer celldesignendonucleasegene functiongene productgene replacementhuman diseasein vivoinsightmutantoverexpressionoxidationrepaired
项目摘要
Project Summary
Genetic recombination is an essential biological process that is central to the repair of DNA damage that
occurs during replication and other assaults on the genome. Unrepaired double-strand breaks (DSBs) are one
of the most lethal kinds of DNA damage and their aberrant repair often leads to genome instability, one of the
hallmarks of cancer. The damage can occur from endogenous sources, such as oxidation, or from external
sources, such as gamma rays. Genetic recombination is also the mechanism for gene replacement and the
repair of CRISPR-Cas-induced DSBs, processes that are commonly used to study all diseases in humans as
well as human disease models in simpler systems. In this proposal, the mechanisms by which DSBs are
repaired will be explored in vivo in yeast cells using a combination of cell biology, genetics and molecular
biology. A system to study the repair of the two ends of a DSB has been designed to allow, for the first time, a
view into the fate of these ends during the recombination process in diploid cells. This system will be used to
assess chromosome end movement during the repair process in both wild type and mutant genetic
backgrounds. The DSBs will be introduced at the same site using three different endonucleases that create 3’
overhangs, 5’ overhangs or blunt ends to determine how the repair system processes these different lesions.
These same ends will be examined for repair using molecular biological techniques designed to measure (1)
end resection, an important step in preparing the DSB end for recombination and (2) the repair synthesis
stimulated at the end, which is a necessary step on the path to repair of the break. Another system will be
designed to permit in vivo visualization of the first appearance of a successfully recombined chromosome
using messenger RNA as surrogate. This system will be combined with various mutations in recombination
genes to define when the timing of those gene products are important for the repair of a site-specific DSB.
Broken DNA ends also arise during DNA replication, especially when the DNA polymerase is confronted with a
nick. A system will be designed to induce a site-specific nick and will be used in conjunction with marked
chromosome ends to define the fate of a DSB that is generated after replication of a nick. Finally, the function
of the Rad5 protein, a homolog of the human HLTF that is often overexpressed in cancer cells, will be studied
to determine its role in template switch recombination. It is known that both HLTF and Rad5 are necessary for
recombination during template switch repair, but it is not known whether they are sufficient. By approaching the
study of recombination in a genetically tractable system that is easy to manipulate, insights into the conserved
mechanisms of recombination will be achieved.
项目摘要
基因重组是一种基本的生物学过程,它是修复DNA损伤的核心
发生在复制和其他对基因组的攻击期间。未修复的双链断裂(DSB)是一个
在最致命的DNA损伤种类中,它们的异常修复通常会导致基因组不稳定,其中之一
癌症的特征。损伤可以来自内源,如氧化,也可以来自外部
源,例如伽马射线。基因重组也是基因替换的机制,而
修复CRISPR-Cas诱导的DSB,这是通常用于研究人类所有疾病的过程
以及更简单系统中的人类疾病模型。在这项提案中,DSB被
修复后的酵母细胞将结合细胞生物学、遗传学和分子生物学进行体内研究
生物学。设计了一种研究DSB两端修复的系统,首次允许
观察二倍体细胞重组过程中这些末端的命运。这个系统将被用来
评估野生型和突变型基因修复过程中的染色体末端移动
背景。DSB将使用三种不同的内切酶在同一位置引入,这三种内切酶产生3‘
突出、5‘突出或钝端,以确定修复系统如何处理这些不同的损伤。
这些相同的末端将使用旨在测量(1)的分子生物学技术进行检查以进行修复。
末端切除,为重组和(2)修复合成准备DSB末端的重要步骤
刺激在最后,这是修复断裂之路上的必要一步。另一个系统将是
被设计成允许在体内看到成功重组的染色体的第一次出现
使用信使RNA作为替代品。这一系统将与重组中的各种突变相结合
基因,以确定何时这些基因产物的时间对于修复特定部位的DSB是重要的。
DNA复制过程中也会出现DNA末端断裂,特别是当DNA聚合酶面临
尼克。将设计一种系统,以诱导特定部位的划痕,并将与标记的
染色体末端决定了复制缺口后产生的DSB的命运。最后,函数
RAD5蛋白,一种经常在癌细胞中过度表达的人类HLTF的同源物,将被研究
以确定其在模板开关重组中的作用。众所周知,HLTF和RAD5对于
模板开关修复过程中的重组,但尚不清楚它们是否足够。通过接近
研究易于操作的遗传可追踪系统中的重组,洞察保守的
重组机制将得以实现。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Ultimate (Mis)match: When DNA Meets RNA.
- DOI:10.3390/cells10061433
- 发表时间:2021-06-08
- 期刊:
- 影响因子:6
- 作者:Palancade B;Rothstein R
- 通讯作者:Rothstein R
Poetry in motion: Increased chromosomal mobility after DNA damage.
运动中的诗歌:DNA 损伤后染色体流动性增加。
- DOI:10.1016/j.dnarep.2017.06.012
- 发表时间:2017
- 期刊:
- 影响因子:3.8
- 作者:Smith,MichaelJ;Rothstein,Rodney
- 通讯作者:Rothstein,Rodney
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney J. ROTHSTEIN其他文献
Rodney J. ROTHSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodney J. ROTHSTEIN', 18)}}的其他基金
Molecular Mechanisms Underlying Recombination at DNA Double-Strand Breaks and Stalled Replication Forks
DNA 双链断裂和停滞复制叉重组的分子机制
- 批准号:
10582329 - 财政年份:2021
- 资助金额:
$ 78.49万 - 项目类别:
Molecular Mechanisms Underlying Recombination at DNA Double-Strand Breaks and Stalled Replication Forks
DNA 双链断裂和停滞复制叉重组的分子机制
- 批准号:
10459423 - 财政年份:2016
- 资助金额:
$ 78.49万 - 项目类别:
Molecular Mechanisms Underlying Recombination at DNA Double-Strand Breaks and Stalled Replication Forks
DNA 双链断裂和停滞复制叉重组的分子机制
- 批准号:
10207088 - 财政年份:2016
- 资助金额:
$ 78.49万 - 项目类别:
Molecular Mechanisms Underlying DNA Double-Strand Break and Crosslink Repair
DNA 双链断裂和交联修复的分子机制
- 批准号:
9071797 - 财政年份:2016
- 资助金额:
$ 78.49万 - 项目类别:
Molecular Mechanisms Underlying DNA Double-Strand Break and Crosslink Repair
DNA 双链断裂和交联修复的分子机制
- 批准号:
9343027 - 财政年份:2016
- 资助金额:
$ 78.49万 - 项目类别:
Using synthetic dosage lethality to screen for novel anti-tumor targets
利用合成剂量致死率筛选新型抗肿瘤靶点
- 批准号:
7193746 - 财政年份:2007
- 资助金额:
$ 78.49万 - 项目类别:
Using synthetic dosage lethality to screen for novel anti-tumor targets
利用合成剂量致死率筛选新型抗肿瘤靶点
- 批准号:
7599616 - 财政年份:2007
- 资助金额:
$ 78.49万 - 项目类别:
Using synthetic dosage lethality to screen for novel anti-tumor targets
利用合成剂量致死率筛选新型抗肿瘤靶点
- 批准号:
7414719 - 财政年份:2007
- 资助金额:
$ 78.49万 - 项目类别:
Yeast Chromosome Structure, Replication and Segregation
酵母染色体结构、复制和分离
- 批准号:
7439225 - 财政年份:2006
- 资助金额:
$ 78.49万 - 项目类别:
Yeast Chromosome Structure, Replication and Segregation
酵母染色体结构、复制和分离
- 批准号:
7589838 - 财政年份:2006
- 资助金额:
$ 78.49万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 78.49万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别: