Understanding the mechanisms of intracellular filamentation by bacteria
了解细菌细胞内丝状化的机制
基本信息
- 批准号:10673747
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsBacteriaBacterial GenesBiological ModelsBordetellaCaenorhabditis elegansCell ShapeCell SizeCellsDependenceEnvironmentEpithelial CellsExposure toFilamentGenesGeneticGenetic ModelsGlucoseGrowthInvadedLeadLengthMorphologyMutagenesisNutrientPathway interactionsPhagocytosisPhenotypePlayPredatory BehaviorRoleSOS ResponseTestingWorkantimicrobialbacterial fitnessdetection of nutrientfitnessinnovationintestinal epitheliummembermodel organismnovelresponse
项目摘要
PROJECT SUMMARY
Bacteria often change their cell shape as a fitness strategy to survive or thrive in diverse environments.
Filamentation is one such morphological strategy, whereby a bacterium dramatically increases in cell size as
it undergoes longitudinal growth without septation. Many bacteria have been observed to undergo
filamentation, but the purpose of these filaments in a host animal is often unknown and the genetic
mechanisms governing this morphological change are largely understudied, outside of the canonical SOS
response. This proposal utilizes an innovative model system to study bacterial filamentation in the context of
a host animal, which consists of a facultative intracellular bacterium, Bordetella atropi, that filaments in the
genetic model organisms Oscheius tipulae and Caenorhabditis elegans. Strikingly, B. atropi uses
filamentation as an adaptive response to nutrients for cell-to-cell spreading: after invasion of an intestinal
epithelial cell, B. atropi converts from a coccobacillus to a filamentous morphology and these filaments invade
multiple neighboring epithelial cells. This filamentation by B. atropi was found to be independent of the
canonical SOS response but required a conserved nutrient-sensing pathway, the glucolipid pathway, which
produces and utilizes the bacterial metabolite UDP-glucose. Divergent bacteria use the glucolipid pathway to
detect rich culture conditions and delay the divisome resulting in moderately larger progeny after binary
division. Taken together, these discoveries suggest that B. atropi detects the rich intracellular environment of
its host cell to trigger filamentation, allowing it to invade neighboring cells. This proposal will further elucidate
the mechanism that the glucolipid pathway uses to inhibit the bacterial divisome and initiate filamentation,
uncover the role that host metabolites play in triggering the phenotype, and discover other genes/pathways
controlling intracellular filamentation by bacteria. First, the genetic mechanism that glucolipid pathway
members use to constitutively inhibit septation will be investigated in B. atropi and this pathway will be tested
in related bacterial species for a role in controlling filamentation. Second, given that the glucolipid pathway
can delay binary division in bacteria grown on rich media, B. atropi will be tested for dependency on host
glucose levels and a rich intracellular environment to induce filamentation. Finally, a transposon mutagenesis
screen will identify a majority of bacterial genes required for intracellular filamentation in O. tipulae. The
results established here will serve as a technical roadmap for determining whether other bacteria can use the
glucolipid pathway or other novel genetic pathways to induce filamentation. Given the importance of
filamentation to bacterial function and survival in a variety of niches, including in the context of a host animal,
this work will increase our understanding of both the environmental triggers and genetic mechanisms that
lead this vital morphological change.
项目概要
细菌经常改变其细胞形状,作为在不同环境中生存或繁衍的适应性策略。
丝状形成就是这样一种形态学策略,细菌的细胞大小急剧增加,如下所示:
它经历纵向生长而没有分隔。人们观察到许多细菌会经历
丝状形成,但这些丝在宿主动物中的用途通常是未知的,并且遗传因素
除了规范的 SOS 之外,控制这种形态变化的机制在很大程度上还没有得到充分研究
回复。该提案利用创新的模型系统来研究细菌丝状化
宿主动物,由兼性细胞内细菌阿托氏博德特氏菌(Bordetella atropi)组成,该细菌在
遗传模型生物Oscheius Tipulae 和Caenorhabditis elegans。引人注目的是,B. atropi 使用
丝状形成是细胞间传播对营养物质的适应性反应:入侵肠道后
在上皮细胞中,阿托皮芽孢杆菌从球杆菌转变为丝状形态,并且这些丝侵入
多个邻近的上皮细胞。发现阿托皮芽孢杆菌的这种丝化独立于
典型的 SOS 反应,但需要一条保守的营养感应途径,即糖脂途径,
产生并利用细菌代谢物UDP-葡萄糖。不同的细菌利用糖脂途径
检测丰富的培养条件并延迟分裂,从而在二元后产生稍大的后代
分配。总而言之,这些发现表明阿托品芽孢杆菌检测到了丰富的细胞内环境
它的宿主细胞触发丝状化,使其能够侵入邻近的细胞。该提案将进一步阐明
糖脂途径用于抑制细菌分裂体并启动丝状化的机制,
揭示宿主代谢物在触发表型中所起的作用,并发现其他基因/途径
通过细菌控制细胞内丝状化。一、糖脂途径的遗传机制
将在阿托皮芽孢杆菌中研究用于组成性抑制分隔的成员,并将测试该途径
在相关细菌物种中具有控制丝状形成的作用。其次,糖脂途径
可以延迟在富培养基上生长的细菌的二元分裂,将测试阿托皮芽孢杆菌对宿主的依赖性
葡萄糖水平和丰富的细胞内环境可诱导丝状形成。最后,转座子诱变
筛选将鉴定 O.tipulae 细胞内丝状化所需的大多数细菌基因。这
这里建立的结果将作为确定其他细菌是否可以使用该技术的技术路线图
糖脂途径或其他新的遗传途径来诱导丝状化。鉴于重要性
丝状化对细菌功能和各种生态位中的生存,包括在宿主动物的环境中,
这项工作将增进我们对环境触发因素和遗传机制的理解
导致这一重要的形态变化。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits.
对不同微孢子虫物种感染的高通量表型分析揭示了一种具有相反耐药性和易感性特征的野生线虫菌株。
- DOI:10.1371/journal.ppat.1011225
- 发表时间:2023-03
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
RNA fluorescence in situ hybridization (FISH) as a method to visualize bacterial colonization in the C. elegans gut.
RNA 荧光原位杂交 (FISH) 作为一种可视化秀丽隐杆线虫肠道中细菌定植的方法。
- DOI:10.17912/micropub.biology.001044
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Poirier,KaylaM;Luallen,RobertJ;Rivera,DalaenaE
- 通讯作者:Rivera,DalaenaE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert J Luallen其他文献
Breaking barriers: a GPCR triggers immunity in nematodes
突破障碍:GPCR 触发线虫的免疫
- DOI:
10.1038/ni.2963 - 发表时间:
2014-08-19 - 期刊:
- 影响因子:27.600
- 作者:
Robert J Luallen;Emily R Troemel - 通讯作者:
Emily R Troemel
Robert J Luallen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Continuing Grant














{{item.name}}会员




