Coronary Magnetic Resonance Angiography

冠状动脉磁共振血管造影

基本信息

  • 批准号:
    10677646
  • 负责人:
  • 金额:
    $ 35.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Abstract The goal of this project is the robust, noninvasive magnetic resonance (MR) imaging of the proximal coronary arteries in humans. MR is a dynamic modality that offers enormous flexibility to deal with the considerations involved in coronary artery imaging, including resolution (spatial and temporal) and motion. Improvements in MR hardware, pulse sequences, and data processing algorithms have led to advances in coronary magnetic resonance angiography (CMRA). However, further improvements in image quality and consistency are needed to raise CMRA to the level of clinical utility. The proposed research plan involves the development and evaluation of new methods for CMRA. Key components include a novel 3D cones trajectory for fast whole-heart imaging, and high-quality 3D image-based navigators (iNAVs) every heartbeat for monitoring motion in every region of the heart. Compared to conventional CMRA methods, non-Cartesian 3D cones scanning offers higher scan efficiency and improved motion performance in the heart. Compared to conventional navigator methods, 3D iNAVs provide much greater information about heart motion during the scan. Major enhancements to CMRA will be investigated in this project, including those for higher resolution and more robust motion detection-compensation. Following a period of technical development and preliminary evaluation, a comparative study of the optimized CMRA method with x-ray angiography (stenosis and fractional flow reserve measurements) will take place on patients with suspected coronary artery disease.
项目摘要 该项目的目标是强大的,非侵入性的磁共振(MR) 人体近端冠状动脉成像。MR是一种动态模态 这提供了巨大的灵活性,以处理涉及的考虑, 冠状动脉成像,包括分辨率(空间和时间)和运动。 MR硬件、脉冲序列和数据处理的改进 算法导致了冠状动脉磁共振血管造影术的进步 (CMRA)。然而,图像质量和一致性的进一步改进是必要的。 需要将CMRA提高到临床实用水平。 拟议的研究计划涉及开发和评估新的 CMRA的方法。关键组件包括一种新颖的3D锥体轨迹, 全心脏成像和高质量的3D图像导航仪(iNAV), 用于监测心脏每个区域的运动。相比 传统的CMRA方法,非笛卡尔3D锥扫描提供更高的 扫描效率和改善的心脏运动性能。相比 传统的导航方法,3D iNAV提供了更多的信息 扫描时的心脏运动CMRA的主要增强功能包括 研究在这个项目中,包括那些更高的分辨率和更强大的 运动检测补偿。经过一段时间的技术发展和 初步评价,优化CMRA方法的比较研究, X射线血管造影(狭窄和血流储备分数测量)将进行 冠状动脉疾病的患者。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid compressed sensing reconstruction of 3D non-Cartesian MRI.
  • DOI:
    10.1002/mrm.26928
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Baron CA;Dwork N;Pauly JM;Nishimura DG
  • 通讯作者:
    Nishimura DG
Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.
  • DOI:
    10.1002/mrm.26957
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Datta A;Cheng JY;Hargreaves BA;Baron CA;Nishimura DG
  • 通讯作者:
    Nishimura DG
Nonrigid Motion Correction With 3D Image-Based Navigators for Coronary MR Angiography.
基于3D图像的导航剂进行冠状动脉造影术的非辅助运动校正。
  • DOI:
    10.1002/mrm.26273
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Luo, Jieying;Addy, Nii Okai;Ingle, R. Reeve;Baron, Corey A.;Cheng, Joseph Y.;Hu, Bob S.;Nishimura, Dwight G.
  • 通讯作者:
    Nishimura, Dwight G.
Combined T2 -preparation and multidimensional outer volume suppression for coronary artery imaging with 3D cones trajectories.
结合 T2 准备和多维外体积抑制,用于具有 3D 锥体轨迹的冠状动脉成像。
  • DOI:
    10.1002/mrm.28057
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zeng,DavidY;Baron,CoreyA;Malavé,MarioO;Kerr,AdamB;Yang,PhillipC;Hu,BobS;Nishimura,DwightG
  • 通讯作者:
    Nishimura,DwightG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DWIGHT NISHIMURA其他文献

DWIGHT NISHIMURA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DWIGHT NISHIMURA', 18)}}的其他基金

Coronary Magnetic Resonance Angiography
冠状动脉磁共振血管造影
  • 批准号:
    8863658
  • 财政年份:
    2015
  • 资助金额:
    $ 35.41万
  • 项目类别:
Coronary Magnetic Resonance Angiography
冠状动脉磁共振血管造影
  • 批准号:
    9324342
  • 财政年份:
    2015
  • 资助金额:
    $ 35.41万
  • 项目类别:
Coronary Magnetic Resonance Angiography
冠状动脉磁共振血管造影
  • 批准号:
    10219335
  • 财政年份:
    2015
  • 资助金额:
    $ 35.41万
  • 项目类别:
Coronary Magnetic Resonance Angiography
冠状动脉磁共振血管造影
  • 批准号:
    9128042
  • 财政年份:
    2015
  • 资助金额:
    $ 35.41万
  • 项目类别:
RAPID IMAGING USING VARIABLE-DENSITY K-SPACE SCANNING
使用可变密度 K 空间扫描进行快速成像
  • 批准号:
    6978416
  • 财政年份:
    2004
  • 资助金额:
    $ 35.41万
  • 项目类别:
Clinical MRI of Peripheral Arterial Disease
周围动脉疾病的临床 MRI
  • 批准号:
    8266379
  • 财政年份:
    2003
  • 资助金额:
    $ 35.41万
  • 项目类别:
Clinical MRI of Peripheral Arterial Disease
周围动脉疾病的临床 MRI
  • 批准号:
    7984076
  • 财政年份:
    2003
  • 资助金额:
    $ 35.41万
  • 项目类别:
Clinical MRI of Peripheral Arterial Disease
周围动脉疾病的临床 MRI
  • 批准号:
    6946365
  • 财政年份:
    2003
  • 资助金额:
    $ 35.41万
  • 项目类别:
Clinical MRI of Peripheral Arterial Disease
周围动脉疾病的临床 MRI
  • 批准号:
    6803969
  • 财政年份:
    2003
  • 资助金额:
    $ 35.41万
  • 项目类别:
Clinical MRI of Peripheral Arterial Disease
周围动脉疾病的临床 MRI
  • 批准号:
    7119217
  • 财政年份:
    2003
  • 资助金额:
    $ 35.41万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了