Investigating the mechanism by which Tacr1 Neurons Regulate Neurovascular Coupling
研究 Tacr1 神经元调节神经血管耦合的机制
基本信息
- 批准号:10678077
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:BrainBrain imagingCalciumCerebrovascular CirculationCerebrovascular DisordersComplexDevelopmentDiseaseElectroencephalographyEnsureEnzymesFellowshipFrequenciesFunctional Magnetic Resonance ImagingFutureG-Protein-Coupled ReceptorsGoalsHealthHumanImageKnowledgeLaser-Doppler FlowmetryLigandsLinkMeasuresMediatingMediatorMentorsMicroscopyMolecularMusNeuronsNeuropeptidesNitric OxideNitric Oxide Synthase Type INitric Oxide Synthetase InhibitorNutrientOxygenParvalbuminsPathway interactionsPerfusionProcessProductionResearch PersonnelResearch TrainingRiskScientistSignal TransductionSleepSomatosensory CortexSourceStrokeSubstance PTAC1 geneTACR1 geneTestingTherapeuticTissuesTrainingTranslatingVasodilationVasodilator AgentsViralWakefulnessantagonistawakeblood oxygen level dependentbrain healthbrain tissuecerebrovascularexperimental studyhemodynamicsimaging studyin vivoinhibitory neuronleadership developmentnervous system disorderneuralneurovascularneurovascular couplingneurovascular unitoptogeneticsresponsetraining opportunitytwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
Neurovascular coupling (NVC) is a mechanism that translates neural activity into either slow or fast
hemodynamic responses. This mechanism is critical for blood oxygen level dependent (BOLD) functional
magnetic resonance imaging (fMRI) studies, and for maintaining healthy brain tissue. Also, disruptions to NVC
have been linked to an increased risk of cerebrovascular disorders, such as stroke. Despite the importance NVC
has in ensuring a functional brain, the exact process of this complex mechanism is poorly understood. Different
mediators responsible for the hemodynamic responses have been proposed. One of these proposed mediators
is nitric oxide (NO), a strong vasodilator. NO is catalyzed by the enzyme neuronal nitric oxide synthase (nNOS)
in specific neurons. Our lab has identified a subset of cortical inhibitory neurons that co-express nNOS and
Tachykinin Receptor 1 (TACR1), also known as substance P receptor. These Tacr1 neurons have been
observed to be in proximity with the neurovascular unit. Moreover, optogenetic stimulation of Tacr1 neurons
results in increased cerebral blood flow (CBF). Based on our findings, Tacr1 neurons mediate NVC. Even though
Tacr1 neurons express nNOS, whether NO is responsible for the observed changes in CBF during optogenetic
stimulation is unknown. Furthermore, no studies have investigated the cellular inputs that activate Tacr1 neurons.
Previous studies suggest that Tacr1 neurons are depolarized by substance P (SP), but where the source of SP
is coming from is unknown. One possibility is parvalbumin (PV) neurons, which are known to release SP.
Additionally, PV neurons are known to produce gamma-band oscillations, which are strongly correlated to the
BOLD signal . PV neurons may be providing a source of SP for Tacr1 neurons
during high gamma-band activity. As such, Tacr1 neuron activity may increase during high gamma-band activity
causing the release of NO. I propose to determine whether
My proposal comprises of the following aims: Aim 1: Determine the
molecular mechanism through which Tacr1 neuron activity increases cerebral blood flow (CBF). Aim 2: Examine
the cellular inputs that activate Tacr1 neurons. Aim 3: Characterize the endogenous activity of Tacr1 neurons
across brain states. Together, these experiments may reveal the circuitry underlying NVC and the association
with state-dependent changes. This knowledge is fundamental to our understanding of BOLD signal and
cerebrovascular disorders. Finally, in this proposal, I outlined a combination of rigorous mentored research
training, coursework, and professional and leadership development activities that along with this fellowship
training period will be instrumental in my development as an aspiring independent investigator.
(an indirect measure of NVC)
SP causes a state-dependent increase in Tacr1
neuron activity, resulting in vasodilation.
项目总结/摘要
神经血管耦合(NVC)是一种机制,它将神经活动转换为慢或快
血流动力学反应。这种机制对于血氧水平依赖性(BOLD)功能性
磁共振成像(fMRI)研究,并保持健康的脑组织。此外,对雷士的破坏
与脑血管疾病如中风的风险增加有关。尽管NVC
在确保大脑功能正常方面,人们对这种复杂机制的确切过程知之甚少。不同
已经提出了负责血液动力学反应的介质。这些被提议的调解人之一
是一氧化氮(NO),一种强血管扩张剂。NO由神经元型一氧化氮合酶(nNOS)催化
在特定的神经元中。我们的实验室已经确定了一个皮质抑制性神经元的子集,它们共表达nNOS,
速激肽受体1(TACR 1),也称为P物质受体。这些Tacr 1神经元
观察到其与神经血管单元接近。此外,Tacr 1神经元的光遗传学刺激
导致脑血流量(CBF)增加。根据我们的研究结果,Tacr 1神经元介导NVC。即使
Tacr 1神经元表达nNOS,无论NO是否负责光遗传学过程中观察到的CBF变化,
刺激尚不清楚。此外,没有研究调查激活Tacr 1神经元的细胞输入。
以前的研究表明,Tacr 1神经元被P物质(SP)去极化,但SP的来源
是从哪里来的还不清楚一种可能性是小清蛋白(PV)神经元,已知其释放SP。
此外,已知PV神经元产生伽马带振荡,这与神经元的运动密切相关。
粗体信号。PV神经元可能为Tacr 1神经元提供SP来源
在高伽玛波段活动。因此,Tacr 1神经元活动可能在高γ-波段活动期间增加
我建议决定是否
我的建议包括以下目标:目标1:确定
Tacr 1神经元活动增加脑血流量(CBF)的分子机制。目标2:检查
激活Tacr 1神经元的细胞输入。目的3:表征Tacr 1神经元的内源性活性
跨越大脑状态。总之,这些实验可能揭示NVC的潜在电路以及
与状态相关的变化。这些知识是我们理解BOLD信号的基础,
脑血管疾病最后,在这个建议中,我概述了一个严格的指导研究的组合,
培训,课程,以及专业和领导力发展活动,沿着这个奖学金
培训期间将有助于我发展成为一个有抱负的独立调查员。
(an NVC的间接测量)
SP导致Tacr 1的状态依赖性增加
神经元活动,导致血管舒张。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Fernanda Juarez Anaya其他文献
Maria Fernanda Juarez Anaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Small Business Research Initiative
A large cross-disorder study of premorbid estimated intelligence and structural brain imaging in psychiatric disorders
精神疾病病前估计智力和结构脑成像的大型跨疾病研究
- 批准号:
23K07001 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive and brain imaging correlates of apathy- components in asymptomatic middle aged individuals at high ADRD- risk
认知和脑成像与 ADRD 高风险无症状中年个体的冷漠成分相关
- 批准号:
10875019 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Age-related hearing impairment and brain reserve using brain imaging analysis
使用脑成像分析与年龄相关的听力障碍和大脑储备
- 批准号:
23K16666 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
- 批准号:
490288 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Operating Grants
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
- 批准号:
10725586 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Transcranial Whole Brain Imaging by Microwave-induced Thermoacoustics
微波诱导热声学经颅全脑成像
- 批准号:
23H03754 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10083773 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Small Business Research Initiative
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: