Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
基本信息
- 批准号:10678848
- 负责人:
- 金额:$ 46.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdhesivesAnimal ModelAutomobile DrivingBiological ModelsBone TissueBotulinum Toxin Type ABrainCharacteristicsCollagenCollagen DiseasesCollagen FiberConnective TissueDiseaseEndowmentEnvironmentFailureFiberFoundationsFrictionHerniaIn VitroInjuryIntra-abdominalKnowledgeLaparotomyLengthLigamentsLocationMachine LearningMechanicsMeniscus structure of jointMesenteryMineralsModelingModificationMusMusculoskeletalNatureNervous SystemOperative Surgical ProceduresPainParalysedPathologicPathologyPatientsPeritonealPhysiologicalPia MaterProcessRotator CuffRunningSkinSlideSourceSpecimenStressStructureSurfaceSystemTechnologyTendinopathyTendon structureTestingTissue SampleTissuesWorkabsorptionbehavior predictionbonebone repaircraniumcrosslinkdesigndisabilityexperimental studyimprovedin vivomathematical modelmechanical behaviormillimetermolecular dynamicsmulti-scale modelingnanonanocrystalnanoscaleolder patientrepairedtreadmill
项目摘要
PROJECT SUMMARY
Interfaces between tissues either transfer load (requiring toughness) or provide a smooth surface
(requiring low friction). Fibrous interfaces are very effective at transferring load between tissues, e.g.,
at connective tissue-bone interfaces (“entheses”), peritoneal-mesentery interfaces, interfaces
between layers of the vasculature, and the pia mater. These interfaces require toughness to resist
high stresses associated with material mismatches. Surgical repair can lead to smooth interfaces
becoming fibrous, (e.g., following hernia surgery) or to tough interfaces becoming weak (e.g.,
following tendon- and ligament-to-bone repair). In older patients with large rotator cuff repairs, for
example, where the desired attachment is not reformed, up to 94% of surgical repairs fail. These
challenges arise in part because the features that endow fibrous interfaces with toughness are not
known. We therefore propose to develop a comprehensive modeling and experimental approach for
studying the factors underlying the transition from tough to weak in a fibrous interface. Our previous
work motivates the hypothesis that disorder is a key toughening feature of fibrous attachments. We
will focus initially on the example of tendon attaching to bone, in which microscale disorder underlies
the ordered macroscale, graded transition between the two tissues, as a foundation for studying the
general problem of adhesion throughout the body. We predict that disorder enhances energy
absorption by distributing failure processes and energy absorption over larger volumes of tissue. We
propose this as a fundamental mechanism by which fibrous interfaces in the body transfer load
effectively. We will test these ideas through two aims: (1) Identify and model the mechanisms of
fibrous attachment toughening ex vivo. We will model and experimentally validate how disorder
across length scales toughens the tendon-to-bone attachment. Hierarchical molecular dynamics-to-
continuum models, enriched by machine learning, will be validated in vitro, in systems with nanoscale
control of mineral distributions, and ex vivo, in tissue samples of fibrous attachments. (2) Identify and
model the loss of fibrous attachment toughness due to pathologic settings in vivo using murine rotator
cuff tendinopathy models. In both aims, nano- through milli-scale characterization will be performed to
define the mechanisms driving mechanical behavior. We will test the hypothesis that pathology-
induced changes at multiple length scales will predict changes in failure mode. These models and
experiments will test the global hypothesis that energy absorption across hierarchies is a fundamental
toughening mechanism by which fibrous interfaces resist injury level loads. Taken together, we
believe that these new models of fibrous attachment will enable an understanding of how the order
and complexity of fibrous attachments leads to effective attachment of tissues.
项目摘要
在组织之间接口转移负载(需要韧性)或提供光滑的表面
(需要低摩擦)。纤维界面非常有效地在组织之间传递载荷,例如
在结缔组织 - 骨界面(“恩特孔”),腹膜 - 渗透界面,界面
在脉管系统的层和PIA材料之间。这些接口需要韧性才能抵抗
与材料不匹配相关的高应力。手术修复会导致光滑的界面
变成纤维(例如,进行疝气手术)或艰难的界面变得薄弱(例如,
肌腱和韧带修复)。在大肩袖维修的老年患者中,
例如,如果未改革所需的附件,则多达94%的手术维修失败。这些
挑战之所以出现,部分是因为赋予具有韧性的纤维接口的功能不是
已知。因此,我们建议开发一种全面的建模和实验方法
研究从纤维界面中从坚硬到弱的过渡的因素。我们的先前
工作激发了以下假设:疾病是纤维固定的关键韧性特征。我们
最初将集中在肌腱附着在骨骼上的例子上,其中显微镜障碍是基础的
有序的宏观尺度,两个时间之间的分级过渡,作为研究
整个身体的粘合剂的一般问题。我们预测疾病会增强能量
通过在大量组织上分配故障过程和能量抽象来抽象。我们
提出这是一种基本机制
有效地。我们将通过两个目的测试这些想法:(1)确定并建模
纤维固定后体内。我们将建模并通过实验验证疾病的方式
长度尺度会使肌腱对骨头的固定紧绷。层次分子动力学到 -
通过机器学习丰富的连续模型将在具有纳米级的系统中得到验证
在纤维附着的组织样品中控制矿物分布和离体。 (2)识别和
模拟使用鼠旋转器在体内因病理环境而导致的纤维固定韧性的损失
袖口肌腱病模型。在这两个目标中,都将执行纳米 - 通过毫米尺度的表征
定义驱动机械行为的机制。我们将测试病理学的假设
在多个长度尺度下诱导的变化将预测故障模式的变化。这些模型和
实验将测试全球假设,即跨层次结构的能量抽象是一个基本的假设
纤维界面可抵抗损伤水平载荷的强化机制。总的来说,我们
相信这些新的纤维依恋模型将使您能够了解秩序
纤维附着的复杂性会导致组织的有效附着。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guy M Genin其他文献
Guy M Genin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guy M Genin', 18)}}的其他基金
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10476994 - 财政年份:2020
- 资助金额:
$ 46.73万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10037326 - 财政年份:2020
- 资助金额:
$ 46.73万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10897549 - 财政年份:2020
- 资助金额:
$ 46.73万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10222575 - 财政年份:2020
- 资助金额:
$ 46.73万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10601609 - 财政年份:2020
- 资助金额:
$ 46.73万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
9342878 - 财政年份:2013
- 资助金额:
$ 46.73万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8551256 - 财政年份:2013
- 资助金额:
$ 46.73万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8913701 - 财政年份:2013
- 资助金额:
$ 46.73万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8723201 - 财政年份:2013
- 资助金额:
$ 46.73万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular engineering of HA-based lubricants for articular cartilage
用于关节软骨的 HA 基润滑剂的分子工程
- 批准号:
10712721 - 财政年份:2023
- 资助金额:
$ 46.73万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 46.73万 - 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:
10736334 - 财政年份:2023
- 资助金额:
$ 46.73万 - 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
- 批准号:
10539405 - 财政年份:2022
- 资助金额:
$ 46.73万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 46.73万 - 项目类别: