Multiscale models of fibrous interface mechanics

纤维界面力学的多尺度模型

基本信息

  • 批准号:
    10037326
  • 负责人:
  • 金额:
    $ 54.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Interfaces between tissues either transfer load (requiring toughness) or provide a smooth surface (requiring low friction). Fibrous interfaces are very effective at transferring load between tissues, e.g., at connective tissue-bone interfaces (“entheses”), peritoneal-mesentery interfaces, interfaces between layers of the vasculature, and the pia mater. These interfaces require toughness to resist high stresses associated with material mismatches. Surgical repair can lead to smooth interfaces becoming fibrous, (e.g., following hernia surgery) or to tough interfaces becoming weak (e.g., following tendon- and ligament-to-bone repair). In older patients with large rotator cuff repairs, for example, where the desired attachment is not reformed, up to 94% of surgical repairs fail. These challenges arise in part because the features that endow fibrous interfaces with toughness are not known. We therefore propose to develop a comprehensive modeling and experimental approach for studying the factors underlying the transition from tough to weak in a fibrous interface. Our previous work motivates the hypothesis that disorder is a key toughening feature of fibrous attachments. We will focus initially on the example of tendon attaching to bone, in which microscale disorder underlies the ordered macroscale, graded transition between the two tissues, as a foundation for studying the general problem of adhesion throughout the body. We predict that disorder enhances energy absorption by distributing failure processes and energy absorption over larger volumes of tissue. We propose this as a fundamental mechanism by which fibrous interfaces in the body transfer load effectively. We will test these ideas through two aims: (1) Identify and model the mechanisms of fibrous attachment toughening ex vivo. We will model and experimentally validate how disorder across length scales toughens the tendon-to-bone attachment. Hierarchical molecular dynamics-to- continuum models, enriched by machine learning, will be validated in vitro, in systems with nanoscale control of mineral distributions, and ex vivo, in tissue samples of fibrous attachments. (2) Identify and model the loss of fibrous attachment toughness due to pathologic settings in vivo using murine rotator cuff tendinopathy models. In both aims, nano- through milli-scale characterization will be performed to define the mechanisms driving mechanical behavior. We will test the hypothesis that pathology- induced changes at multiple length scales will predict changes in failure mode. These models and experiments will test the global hypothesis that energy absorption across hierarchies is a fundamental toughening mechanism by which fibrous interfaces resist injury level loads. Taken together, we believe that these new models of fibrous attachment will enable an understanding of how the order and complexity of fibrous attachments leads to effective attachment of tissues.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guy M Genin其他文献

Guy M Genin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guy M Genin', 18)}}的其他基金

Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
  • 批准号:
    10476994
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Strain Analysis Software for Open Science
开放科学应变分析软件
  • 批准号:
    10406113
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
  • 批准号:
    10678848
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
  • 批准号:
    10222575
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
  • 批准号:
    10897549
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
  • 批准号:
    10601609
  • 财政年份:
    2020
  • 资助金额:
    $ 54.54万
  • 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
  • 批准号:
    9342878
  • 财政年份:
    2013
  • 资助金额:
    $ 54.54万
  • 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
  • 批准号:
    8551256
  • 财政年份:
    2013
  • 资助金额:
    $ 54.54万
  • 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
  • 批准号:
    8913701
  • 财政年份:
    2013
  • 资助金额:
    $ 54.54万
  • 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
  • 批准号:
    8723201
  • 财政年份:
    2013
  • 资助金额:
    $ 54.54万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 54.54万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 54.54万
  • 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
  • 批准号:
    10021363
  • 财政年份:
    2022
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Investment Accelerator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了