Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
基本信息
- 批准号:9342878
- 负责人:
- 金额:$ 45.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-20 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAnterior Cruciate LigamentBone TissueClinicalCollagenCollagen FiberCollagen FibrilCommunitiesComputer SimulationCrystallizationDataDigit structureElderlyElectron energy loss spectroscopyFailureFluorescenceFoundationsFutureGeometryGoalsHealthIndividualLeadLengthLigamentsMapsMechanicsMethodsMicroscopeMineralsModelingMusculoskeletalOperative Surgical ProceduresOutcomePainPathologicPhasePhysiologicalPlant RootsPolarization MicroscopyPopulationRaman Spectrum AnalysisResolutionRotator CuffScanningSourceStressSynchrotronsSystemTechniquesTendon structureTestingTissue EngineeringTissue ModelTissuesTransmission Electron MicroscopyWorkX ray diffraction analysisX-Ray Computed TomographyX-Ray Diffractionanterior cruciate ligament reconstructionbasebonebone geometrybone healingclinical careclinical practiceclinically relevantcrosslinkdiffraction of lightdisabilityexperimental studyhealinginjuredligament injurymechanical propertiesmillimetermulti-scale modelingmusculoskeletal injurynanometernanoscalenovelolder patientpredictive modelingpublic health relevancerepairedresilienceresponserotator cuff tearskeletaltool
项目摘要
DESCRIPTION (provided by applicant): Torn tendons and ligaments often require surgical repair to their bony insertions. A large percentage of these repairs have poor outcomes; for example, up to 94% of surgical rotator cuff repairs fail. At the root of these failures is the fundamental challenge of attaching two materials, tendon and bone, with vastly different mechanical properties. The natural tendon-to-bone insertion involves a number of mechanisms that create a strong and tough attachment. Unfortunately, this tissue degrades with age, and is not regenerated in healing. Our overall goal is to develop a multiscale model of the tendon-to-bone insertion that will lead to (1) tissue toughness metrics that can guide clinical decisions for
elderly patients, and (2) foundations for future tissue- engineered surgical grafts. Based on our previous work, we hypothesize that toughening and strengthening mechanisms exist across several length scales, and that these are most pronounced in a the compliant region of tissue between tendon and bone that does not regrow in the healing setting. We will characterize the stiffening, strengthening, and toughening mechanisms that contribute to this resilience across scales in natural and pathologic tendon-to-bone insertions as a function of age. The work involves three aims: (1) At the nanoscale, elemental spatial maps will be acquired using transmission electron microscopy electron energy loss spectroscopy to determine mineral and collagen distributions across the insertion. Individual mineralized collagen fibrils will be mechanically tested; we have recently performed such tests on mammalian collagen fibrils. In silico experiments will identify and quantify deformation mechanisms underlying the toughness of mineralized collagen fibrils. (2) At the microscale, synchrotron X-ray diffraction, Raman spectroscopy, and polarized light microscopy will be used to determine the distributions of mineral content and collagen orientation. Mechanics of the tendon-to-bone insertion will be examined with micrometer resolution using a confocal microscope-mounted testing frame. In silico, nonlinear homogenization methods will be used to incorporate mineralized collagen fiber mechanics from Aim 1 into constitutive models of connected networks of mineralized and cross-linked collagen fibers. (3) At the millimeter scale, the 3D inter-digitation geometry of tendon and
bone will be determined using phase contrast X-ray computed tomography and the mechanics of the tendon-to-bone insertion will be determined using tissue level tensile tests. In silico experiments combining tendon-to-bone geometry with microscale tissue models will produce hypotheses of mechanisms underlying tendon-to-bone insertion toughness. Mechanical fields will be passed down hierarchical model levels to evaluate collagen fibril response to predicted physiologic and pathologic tendon-to-bone insertion loading. Together, these models and data form the foundation of future tissue engineering efforts and efforts to identify clinically useful metrics of tendon-to-bone tissue health.
描述(由申请人提供):肌腱和韧带撕裂通常需要手术修复其骨插入。这些维修的很大一部分的结果差。例如,多达94%的手术肩袖修理失败。这些故障的根源是将两种材料(肌腱和骨骼)附着的基本挑战,具有截然不同的机械性能。天然肌腱到骨的插入涉及多种机制,这些机制会产生强大而艰难的依恋。不幸的是,该组织随着年龄的增长而降解,并且在愈合中没有再生。我们的总体目标是开发肌腱到骨插入的多尺度模型,该模型将导致(1)组织韧性指标,该指标可以指导临床决策
老年患者和(2)未来组织手术移植物的基础。基于我们以前的工作,我们假设在几个长度尺度上存在韧性和加强机制,并且在肌腱和骨骼之间的组织区域中最为明显,在愈合环境中不会再生长。我们将表征自然和病理肌腱对骨插入量表的僵化,增强和韧性机制,这些机制跨越了年龄的函数。这项工作涉及三个目的:(1)在纳米级,使用透射电子显微镜电子损失光谱法获取元素空间图,以确定整个插入的矿物质和胶原蛋白分布。单个矿化胶原纤维将进行机械测试;我们最近对哺乳动物胶原原纤维进行了此类测试。在计算机中,实验将识别和量化矿化胶原纤维韧性的背后的变形机制。 (2)在显微镜,同步加速器X射线衍射,拉曼光谱和极化光显微镜将用于确定矿物含量和胶原方向的分布。肌腱到骨插入的力学将使用共聚焦显微镜安装的测试框架以微米分辨率进行检查。在计算机中,非线性均质化方法将用于将AIM 1的矿化胶原纤维力学纳入矿化和交联胶原蛋白纤维连接网络的组成型模型中。 (3)在毫米尺度上,肌腱和
将使用相对X射线计算机断层扫描确定骨头,并将使用组织水平的拉伸测试确定肌腱对骨插入的力学。在将肌腱到骨的几何形状与微观组织模型结合的硅实验中,将产生肌腱到骨插入韧性的机制的假设。机械场将被传递到分层模型水平,以评估对预测的生理和病理肌腱对骨插入负载的胶原原纤维反应。这些模型和数据共同构成了未来组织工程工作的基础,以及确定肌腱到骨组织健康的临床有用指标的努力。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correction of bias in the estimation of cell volume fraction from histology sections.
- DOI:10.1016/j.jbiomech.2020.109705
- 发表时间:2020-05-07
- 期刊:
- 影响因子:2.4
- 作者:Liu Y;Schwartz AG;Hong Y;Peng X;Xu F;Thomopoulos S;Genin GM
- 通讯作者:Genin GM
In Situ Evaluation of Calcium Phosphate Nucleation Kinetics and Pathways during Intra- and Extrafibrillar Mineralization of Collagen Matrices.
- DOI:10.1021/acs.cgd.6b00864
- 发表时间:2016
- 期刊:
- 影响因子:3.8
- 作者:Kim, Doyoon;Lee, Byeongdu;Thomopoulos, Stavros;Jun, Young-Shin
- 通讯作者:Jun, Young-Shin
Osmotic pressure induced tensile forces in tendon collagen.
- DOI:10.1038/ncomms6942
- 发表时间:2015-01-22
- 期刊:
- 影响因子:16.6
- 作者:Masic, Admir;Bertinetti, Luca;Schuetz, Roman;Chang, Shu-Wei;Metzger, Till Hartmut;Buehler, Markus J.;Fratzl, Peter
- 通讯作者:Fratzl, Peter
Nonlocal Effect on Stiffness Measurements of a Collagen Molecule.
对胶原分子刚度测量的非局部影响。
- DOI:10.1115/1.4029607
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Birman,Victor
- 通讯作者:Birman,Victor
Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response.
生物聚合物的机械性能和失效:原子反应到宏观响应。
- DOI:10.1007/128_2015_643
- 发表时间:2015
- 期刊:
- 影响因子:8.6
- 作者:Jung,GangSeob;Qin,Zhao;Buehler,MarkusJ
- 通讯作者:Buehler,MarkusJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guy M Genin其他文献
Guy M Genin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guy M Genin', 18)}}的其他基金
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10476994 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10037326 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10678848 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10222575 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10897549 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Multiscale models of fibrous interface mechanics
纤维界面力学的多尺度模型
- 批准号:
10601609 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8551256 - 财政年份:2013
- 资助金额:
$ 45.57万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8913701 - 财政年份:2013
- 资助金额:
$ 45.57万 - 项目类别:
Cross-scale interactions between mineral and collagen for tendon-bone attachment
矿物质和胶原蛋白之间的跨尺度相互作用,用于腱骨附着
- 批准号:
8723201 - 财政年份:2013
- 资助金额:
$ 45.57万 - 项目类别:
相似国自然基金
纳米纤维/多孔材料复合构筑骨-韧带-骨一体化支架用于前交叉韧带重建研究
- 批准号:32301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度分级结构电活性人工韧带的构建及其促前交叉韧带有序重构研究
- 批准号:32371402
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SNP rs970547通过降低COL12A1蛋白稳定性启动内质网应激诱发前交叉韧带损伤易感的机制研究
- 批准号:82360418
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肌腱-骨组织转变促进前交叉韧带重建连接处再生的功能与机制研究
- 批准号:32301135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用生物3D打印方法仿生构建具有韧带止点分层结构的人工韧带,重建前交叉韧带止点生理结构
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhanced Soft Tissue-to-Bone Healing via Treatment with Novel Growth Factor NELL-1: Targeted Delivery and Biomimetic Scaffolds
通过新型生长因子 NELL-1 治疗增强软组织到骨的愈合:靶向递送和仿生支架
- 批准号:
10456093 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Enhanced Soft Tissue-to-Bone Healing via Treatment with Novel Growth Factor NELL-1: Targeted Delivery and Biomimetic Scaffolds
通过新型生长因子 NELL-1 治疗增强软组织到骨的愈合:靶向递送和仿生支架
- 批准号:
10664877 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Enhanced Soft Tissue-to-Bone Healing via Treatment with Novel Growth Factor NELL-1: Targeted Delivery and Biomimetic Scaffolds
通过新型生长因子 NELL-1 治疗增强软组织到骨的愈合:靶向递送和仿生支架
- 批准号:
10219798 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Enhanced Soft Tissue-to-Bone Healing via Treatment with Novel Growth Factor NELL-1: Targeted Delivery and Biomimetic Scaffolds
通过新型生长因子 NELL-1 治疗增强软组织到骨的愈合:靶向递送和仿生支架
- 批准号:
10014168 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Imaging post-traumatic osteoarthritis 10-years after ACL reconstruction: a multicenter cohort study with quantitative MRI
ACL 重建 10 年后创伤后骨关节炎的影像学:定量 MRI 的多中心队列研究
- 批准号:
10878519 - 财政年份:2019
- 资助金额:
$ 45.57万 - 项目类别: