Dysregulation of developing neural circuits during epileptogenesis
癫痫发生过程中神经回路发育失调
基本信息
- 批准号:10701429
- 负责人:
- 金额:$ 39.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBasic ScienceBehaviorBiologicalBiological ModelsBiologyBrainBrain InjuriesCell ProliferationChemicalsDevelopmentElectrophysiology (science)EnsureEpilepsyEpileptogenesisEquilibriumExperimental ModelsExposure toFunctional ImagingFunctional disorderGenerationsGenesGeneticGoalsHypersensitivityImageImpairmentIndividualIntellectual functioning disabilityKnowledgeLabelLeadLifeMeasuresMethodsModelingMolecularNeurodevelopmental DisorderNeuronsParentsPathway interactionsPhysiologyPilot ProjectsPopulationPredispositionPreparationProcessPropertyRecurrenceResearchRoleSeizuresSensorySeriesShapesStructureStudy modelsSynapsesTadpolesTechniquesTectum MesencephaliTestingTimeTraumatic Brain InjuryXenopusXenopus laevisbrain cellconfocal imagingearly experienceexperienceexperimental studyimprovedin vivoinnovationneural circuitneurogenesisneuron developmentnewborn neuronnovelpreventpublic health relevancesensory processing disordersingle-cell RNA sequencingspreading depressiontherapeutic targetvoltage
项目摘要
New neurons are born throughout life: their generation, integration and function are tightly
regulated. Impairment of this process is associated with brain circuit dysfunction and the
development of epileptiform activity and sensory hypersensitivity, associated with
neurodevelopmental disorders. In several models of epileptogenesis, prior and repeated seizure
activity (e.g. from traumatic brain injury) results in increased seizure susceptibility and
eventually epilepsy. Neurogenesis is known to be disrupted following repeated seizure activity,
which can alter cell proliferation, survival, differentiation and functional maturation of new
neurons as they incorporate into existing neural circuits. Since altered neurogenesis has been
shown to be a causative factor in both spreading depression and seizure generation, both
pathophysiological hallmarks of epilepsy, it is important to understand whether abnormal circuit
activity and perturbed neurogenesis cause newborn neurons to improperly integrate and
function within existing brain circuits, disturbing activity and leading to epilepsy.
This proposal tests the hypothesis that seizure activity and network hyperexcitability perturb
development and function of new neurons, resulting in highly excitable neurons that potentiate
network hyperexcitability and lead to epilepsy and sensory hypersensitivity.
We will a reduced preparation, the Xenopus laevis tadpole tectum—an established model for
studying generation of new neurons and the biological basis for epilepsy. It is a highly recurrent
structure with ongoing integration of new neurons, and thus ideally placed for understanding
the fundamental biological underpinnings of developmental epilepsy. We will use genetic
methods to tag later-born neurons and follow them in vivo as they integrate into existing brain
circuits following developmental seizure exposure. We will measure the structure and
physiology of these neurons as they mature. We will then test whether we can manipulate the
electrical activity of these miswired neurons and test whether we can ameliorate seizure
activity. Finally, we will examine genes that are expressed incorrectly in later born neurons
following a seizure to test whether these genetic pathways can be responsible for the abnormal
development of these neurons and miswiring of the brain following a seizure. Improving our
understanding of how exposure to prior seizures affects the maturation of neural circuits, and
how this in turn leads to epilepsy will not only help illustrate the basic biology underlying
epileptogenesis, but will result in potential therapeutic targets that could prevent formation of
epilepsy following a series of seizures, such as those experienced after brain injury.
新的神经元在整个生命过程中诞生:它们的生成,整合和功能与神经元的生长密切相关。
监管.这一过程的损害与脑回路功能障碍有关,
癫痫样活动和感觉超敏反应的发展,
神经发育障碍在几种癫痫发生模型中,先前和反复发作
活动(例如创伤性脑损伤)导致癫痫发作易感性增加,
最后是癫痫已知神经发生在反复发作活动后被破坏,
它可以改变细胞增殖、存活、分化和新的细胞的功能成熟,
神经元融入现有的神经回路。自从改变神经发生以来,
在扩散性抑郁症和癫痫发作中,
癫痫的病理生理特征,重要的是要了解是否异常电路
活动和扰乱的神经发生导致新生神经元不适当地整合,
在现有的大脑回路中发挥作用,干扰活动并导致癫痫。
该提议检验了癫痫发作活动和网络过度兴奋扰乱
新神经元的发育和功能,导致高度兴奋的神经元,
网络兴奋过度,导致癫痫和感觉过敏。
我们将减少准备,非洲爪蟾蝌蚪tadpole tectum-一个建立的模型,
研究新神经元的产生和癫痫的生物学基础。这是一个高度重复的
新神经元持续整合的结构,因此非常适合理解
发展性癫痫的基本生物学基础。我们将使用基因
标记后来出生的神经元并在体内跟踪它们整合到现有大脑中的方法
发育性癫痫暴露后的神经回路我们将测量结构,
这些神经元成熟时的生理学。然后我们将测试我们是否可以操纵
这些神经元的电活动,测试我们是否可以改善癫痫发作,
活动最后,我们将检查在后来出生的神经元中错误表达的基因
在癫痫发作后,测试这些基因通路是否可以导致异常的
这些神经元的发展和癫痫发作后大脑的错误布线。改善我们
了解癫痫发作前的暴露如何影响神经回路的成熟,
这又是如何导致癫痫的,这不仅有助于阐明
癫痫发生,但将导致潜在的治疗目标,可以防止形成
一系列癫痫发作后的癫痫,如脑损伤后的癫痫。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARLOS D AIZENMAN其他文献
CARLOS D AIZENMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARLOS D AIZENMAN', 18)}}的其他基金
Advancing the Research Careers of Women and PEERs in Brain Science
促进女性和同行在脑科学领域的研究事业
- 批准号:
10577838 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别:
Advancing the Research Careers of Women and PEERs in Brain Science
促进女性和同行在脑科学领域的研究事业
- 批准号:
10332902 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别:
Brown University Postbaccalaureate Research Education Program
布朗大学学士后研究教育计划
- 批准号:
10557520 - 财政年份:2018
- 资助金额:
$ 39.88万 - 项目类别:
Brown University Postbaccalaureate Research Education Program
布朗大学学士后研究教育计划
- 批准号:
10079490 - 财政年份:2018
- 资助金额:
$ 39.88万 - 项目类别:
Brown University Postbaccalaureate Research Education Program
布朗大学学士后研究教育计划
- 批准号:
10327699 - 财政年份:2018
- 资助金额:
$ 39.88万 - 项目类别:
Cellular basis of visually-guided behavior during development
发育过程中视觉引导行为的细胞基础
- 批准号:
7785246 - 财政年份:2010
- 资助金额:
$ 39.88万 - 项目类别:
Cellular basis of visually-guided behavior during development
发育过程中视觉引导行为的细胞基础
- 批准号:
8209136 - 财政年份:2010
- 资助金额:
$ 39.88万 - 项目类别:
Cellular basis of visually-guided behavior during development
发育过程中视觉引导行为的细胞基础
- 批准号:
8007357 - 财政年份:2010
- 资助金额:
$ 39.88万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别:
Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 39.88万 - 项目类别: