Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
基本信息
- 批准号:10679097
- 负责人:
- 金额:$ 22.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAffectAge YearsAlgorithmsAnatomyArtificial IntelligenceBariumBiomechanicsBolus InfusionClassificationClinicClinicalComputer softwareConsumptionDataData SetDeglutitionDeglutition DisordersDehydrationDevelopmentDiagnosisDiagnostic ProcedureElderlyEnvironmentEtiologyFunctional disorderFutureGoalsHead and Neck CancerHead and neck structureHealthHealth care facilityHumanImageImpairmentInpatientsLeftLength of StayLungMalnutritionManualsMasksMeasuresMedicalMethodsMorphologic artifactsNatureNetwork-basedNeurodegenerative DisordersOral cavityOutcomeOutputPatient imagingPatientsPharyngeal structurePhysiologyPneumoniaPrevalenceProceduresQuality of lifeReference ValuesResearchResourcesRetrospective cohortSpeedStrokeStructureTechniquesTimeUnited StatesValidationVisualizationWorkacute careartificial intelligence methodartificial neural networkaspirateautomated segmentationcatalystclinical decision supportclinical decision-makingclinical practiceclinically relevantcontrast enhancedconvolutional neural networkcostdesignexperiencehospital readmissionimage processingimprovedinterestmortalitynovelradiological imagingsegmentation algorithmsupport toolstool
项目摘要
ABSTRACT
Dysphagia (swallowing dysfunction) is highly prevalent in a variety of medical conditions and prevalence
increases with advancing age. If incorrectly diagnosed or left untreated, dysphagia can lead to serious health
consequences, including malnutrition, dehydration, and pneumonia. The most commonly used procedure to
diagnose dysphagia is the videofluoroscopic swallow (VFS) study. A VFS study utilizes barium to provide a
contrast enhanced fluoroscopic procedure that allows for visualization of anatomy and physiology relevant to
swallowing as well as identification of swallowing biomechanical impairments. Current VFS analysis methods
used clinically are primarily qualitative in nature and subject to issues with reliability. Quantitative methods to
support VFS clinical interpretation do exist but are primarily found in the research environment due to the time-
consuming nature of frame by frame analysis required. The overall objective of this application is to develop
and validate an artificial neural network-based software that will segment and track clinically important
swallowing structures on a frame-by-frame basis within swallowing videos. Segmentation and tracking will
automatically occur post acquisition with no needed input or video editing. Frame by frame auto-segmentation
of regions of interest will allow for quantitative metrics to be determined algorithmically. To accomplish this
objective, two specific aims are proposed: 1) to develop and validate an AI based auto-segmentation algorithm
that accurately segments swallowing anatomy and bolus flow in VFS studies from a retrospective cohort of
stroke and mixed etiology patients and 2) to apply the auto-segmentation algorithm to derive a variety of
clinically relevant metrics in VFS studies and compare to manually derived reference values. To accomplish
the first aim, pre-processing techniques will be established to improve image quality and reduce image artifacts
using a novel 3D printed anthropomorphic head & neck phantom. Using a robust existing dataset of VFS
images, we will then develop a Mask R-Convolutional Neural Network for automatic segmentation of a variety
of clinically relevant features on VFS studies and will validate the auto-segmentation against manually derived
segmentation. For the second aim, the auto-segmentation algorithm will be applied to derive important
swallowing measures and associated metrics from the VFS images. The output of the algorithm will be
validated against measures and metrics manually derived from the VFS images by experienced raters with
established reliability. Tools developed through this project will reduce the subjectivity of human interpretation
of VFS images, which will improve consistency and reliability of dysphagia diagnosis and treatment.
摘要
吞咽困难(吞咽功能障碍)在各种医疗条件和流行率中非常普遍。
随着年龄的增长而增加。如果诊断错误或不治疗,吞咽困难会导致严重的健康问题。
后果,包括营养不良、脱水和肺炎。最常用的过程是
吞咽困难的诊断是视频透视吞咽(VFS)研究。一项VFS研究利用钡来提供
对比度增强的透视程序,允许可视化相关的解剖和生理学
吞咽以及吞咽生物力学损伤的鉴定。当前的VFS分析方法
临床使用主要是定性的,并受到可靠性问题的影响。定量的方法来
支持VFS临床解释确实存在,但主要是在研究环境中发现的,因为时间-
需要逐帧分析的消耗特性。这个应用程序的总体目标是开发
并验证一种基于人工神经网络的软件,该软件将对临床上重要的疾病进行分段和跟踪
在吞咽视频中逐帧吞咽结构。细分和跟踪将
自动执行采集后操作,无需输入或编辑视频。逐帧自动分割
感兴趣区域的范围将允许通过算法确定定量指标。要做到这一点
目的:1)开发并验证一种基于人工智能的自动分割算法
准确地分割VFS研究中的吞咽解剖和推注血流
中风和混合病因患者和2)应用自动分割算法推导出各种
VFS研究中与临床相关的指标,并与手动得出的参考值进行比较。要完成
第一个目标是建立预处理技术,以提高图像质量并减少图像伪影
使用了一种新的3D打印拟人化的头颈部模型。使用健壮的现有VFS数据集
然后,我们将开发一种MASK R-卷积神经网络来自动分割各种
VFS研究的临床相关特征,并将对照手动得出的数据验证自动分割
分段。对于第二个目标,将应用自动分割算法来提取重要的
接受来自VFS映像的度量和关联指标。该算法的输出将为
对照由经验丰富的评分员手动从VFS映像中得出的衡量标准和指标进行验证
已确定的可靠性。通过该项目开发的工具将减少人工解释的主观性
这将提高吞咽困难诊断和治疗的一致性和可靠性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Patrick Bednarz其他文献
Bryan Patrick Bednarz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Patrick Bednarz', 18)}}的其他基金
Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
- 批准号:
10511906 - 财政年份:2022
- 资助金额:
$ 22.66万 - 项目类别:
Real-time Tumor Localization and Guidance for Radiotherapy Using US and MRI
使用超声和 MRI 进行实时肿瘤定位和放射治疗指导
- 批准号:
9321769 - 财政年份:2015
- 资助金额:
$ 22.66万 - 项目类别:
A cancer-targeted phospholipid ether analog for molecular radiotherapy of pediatric solid tumors
用于儿童实体瘤分子放射治疗的癌症靶向磷脂醚类似物
- 批准号:
9064105 - 财政年份:2015
- 资助金额:
$ 22.66万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 22.66万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 22.66万 - 项目类别:
Studentship














{{item.name}}会员




