Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease

优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征

基本信息

  • 批准号:
    10703249
  • 负责人:
  • 金额:
    $ 33.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-17 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Abstract: Neuroanatomical studies have shown globus pallidus internus (GPi) projection neurons strongly innervate the mesencephalic locomotor region (MLR), centromedian / parafascicular complex (CM/Pf), and lateral habenula (LHb). Abnormal activity patterns within these pallidofugal output nuclei has been hypothesized to contribute to several cognitive-motor signs of Parkinson's disease (PD), including levodopa-resistant gait dysfunction, behavioral set shifting difficulties, and deficits in goal-oriented motivation, respectively. However, little is known about the actual pathophysiological changes that occur in these nuclei with the emergence of Parkinson's disease. Deep brain stimulation (DBS) targeting regions in and around the GPi and subthalamic nucleus (STN) can be highly effective for treating motor signs of PD, but how such targeting affects MLR, CM/Pf, and LHb nuclei and how those effects relate to improvement or worsening of cognitive-motor signs of PD is not well understood. In the preclinical MPTP-treated non-human primate model of PD, Project 3 will investigate the contribution of (1) the GPi ↔ MLR network to parkinsonian gait dysfunction, (2) the GPi → CM/Pf network to difficulties with behavioral set shifting, and (3) the GPi → LHb network to deficits in goal-oriented motivation. This project will leverage our capacity to perform wireless spike and LFP recordings from chronic microdrives during untethered movement and during cognitive-motor tasks relevant to PD. The project will also develop a novel response surface optimization algorithm that uses real-time feature assessments of spike and LFP responses in the MLR, CM/Pf, and LHb to drive DBS targeting of the STN/lenticular fasciculus or GPe/GPi. The settings within the multi-dimensional DBS parameter space that generate the most robust changes in spike rate, spike pattern, spectral power, and/or information encoding within the MLR, CM/Pf, and LHb will be tested in cognitive-motor behavioral tasks that introduce obstacles and vary levels of effort and reward. This study will be critically important for not only better understanding the neural circuitry underlying cognitive-motor symptoms of PD but also to refine DBS methodologies to provide more consistent clinical outcomes with DBS therapies for PD.
摘要: 神经解剖学研究表明,苍白球内侧核(GPI)投射神经元强烈地支配 中脑运动区(MLR)、中央正中/束旁复合体(CM/PF)和外侧缰核 (LHB)。这些苍白球分离输出核团内的异常活动模式被假设为有助于 帕金森氏病(PD)的几个认知运动体征,包括左旋多巴抵抗步态障碍, 行为定势转换困难和目标导向动机缺陷。然而,人们对此知之甚少 帕金森氏症出现时,这些核团实际发生的病理生理变化 疾病。脑深部刺激(DBS)靶向GPI和丘脑底核(STN)内及其周围区域 可以非常有效地治疗帕金森病的运动体征,但这种靶向如何影响MLR、CM/Pf和LHb 这些影响与帕金森病认知运动体征的改善或恶化之间的关系尚不清楚 明白了。在临床前MPTP治疗的帕金森病非人类灵长类动物模型中,项目3将研究 (1)GpI↔MLR网络在帕金森病步态障碍中的作用;(2)Gpi→CM/PF网络在帕金森病步态障碍中的作用 行为定势转换困难,以及(3)GPI→LHb网络目标导向动机缺失。 该项目将利用我们的能力从慢性微驱动器执行无线尖峰和LFP记录 在自由运动和与帕金森病相关的认知运动任务中。该项目还将开发一种 一种使用SPEKE和LFP实时特征评估的响应面优化算法 MLR、CM/Pf和LHb的反应促使DBS靶向STN/豆状核束或GPE/GPI。 在多维DBS参数空间中产生最稳健变化的设置 尖峰速率、尖峰模式、频谱功率和/或MLR、CM/PF和LHb内的信息编码将是 在认知运动行为任务中进行测试,这些任务会引入障碍,并会带来不同程度的努力和奖励。这 这项研究不仅对更好地理解认知运动背后的神经回路至关重要 帕金森病的症状,但也改进DBS方法,以提供更一致的临床结果 帕金森病的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Douglas Johnson其他文献

Matthew Douglas Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Douglas Johnson', 18)}}的其他基金

Data and Analysis Core
数据与分析核心
  • 批准号:
    10709639
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
Training Program in Translational Neuromodulation
转化神经调节培训计划
  • 批准号:
    10412589
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
Training Program in Translational Neuromodulation
转化神经调节培训计划
  • 批准号:
    10659148
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
Data and Analysis Core
数据与分析核心
  • 批准号:
    10610559
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
  • 批准号:
    10455432
  • 财政年份:
    2021
  • 资助金额:
    $ 33.85万
  • 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
  • 批准号:
    10282964
  • 财政年份:
    2021
  • 资助金额:
    $ 33.85万
  • 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
  • 批准号:
    10194764
  • 财政年份:
    2021
  • 资助金额:
    $ 33.85万
  • 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
  • 批准号:
    10489838
  • 财政年份:
    2021
  • 资助金额:
    $ 33.85万
  • 项目类别:
Spatiotemporal Optimization of Deep Brain Stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
  • 批准号:
    10680463
  • 财政年份:
    2016
  • 资助金额:
    $ 33.85万
  • 项目类别:
Spatiotemporal optimization of deep brain stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
  • 批准号:
    9278298
  • 财政年份:
    2016
  • 资助金额:
    $ 33.85万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了