Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators

光电穿孔:通过纳米级光放大电压发生器传递生物大分子

基本信息

  • 批准号:
    10688265
  • 负责人:
  • 金额:
    $ 18.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Controlled and efficient intracellular delivery of biomacromolecules, such as proteins and nucleic acids, is a significant challenge in realizing their potential as therapeutics and critical reagents for manufacture of cell and cell product therapies, such as CAR-T cells. Existing biological, chemical, and physical delivery methods all have limitations that preclude their use in in vivo or large scale applications. Photoelectroporation (PEP) is proposed to overcome this challenge. Single-crystalline Si nanowires (~50 nm diameter, 10 µm long) containing photodiodes are the “photoelectroporators” that can be dispersed amongst cells and excited by near-infrared (NIR) light to generate a voltage across nanowires with calculated electric fields and current densities similar to those achieved in traditional and microscale electroporation, which are sufficient to drive cell membrane pore formation and enable diffusion of macromolecules into the cytosol. NIR light can penetrate tissue or bioreactors in static or flow configurations, is non-toxic and non-heating, and has excellent spatial and temporal control. PEP technology could provide distributed or locally targeted delivery, in large or small volumes, even in flow, and would offer significant benefits to patients in need of biologic, cellular, or cell derived therapies. The Geode process has been developed to produce ~105 times more material than conventional methods, finally making it feasible not only to evaluate the delivery ability of PEP but to apply it to in vivo or cell processing uses in the future. The goal of this proposal is to produce photoelectroporators with different numbers of diodes and coatings and evaluate their PEP capacity in vitro to deliver model and functional biomacromolecules to cells without reducing viability. Two aims have been set to meet this goal. (1) Synthesize Si nanowires with different numbers of pn diodes programmed along their length and with different coatings and characterize their physical, chemical and photo properties. (2) Demonstrate delivery of biomacromolecules to cells via PEP, which includes identifying the nanowire properties and PEP parameters with the greatest efficiency and cell viability as well as understanding how cells near and within a distributed field are electroporated. Functional protein, mRNA and DNA cargo will be delivered to both adherent and non-adherent cells. These results will establish PEP as a viable method to transfect viable cells with large, functional cargoes that uses light and distributed nanowires to overcome the constraints of other methods and enable future preclinical work, including in vivo PEP and liter- scale PEP with disease relevant cargoes and target cells.
摘要 生物大分子(例如蛋白质和核酸)的受控和有效的细胞内递送是一种有效的方法。 在实现其作为治疗剂和用于制造细胞关键试剂的潜力方面存在重大挑战, 细胞产品疗法,如CAR-T细胞。现有的生物、化学和物理递送方法都具有 这些限制妨碍了它们在体内或大规模应用中的使用。提出了光电穿孔技术(PEP) 来克服这个挑战。单晶Si纳米线(直径约50 nm,长10 µm),包含 光电二极管是“光电穿孔器”,其可以分散在细胞中并由近红外激发。 (NIR)光在纳米线上产生电压,计算出的电场和电流密度类似于 在传统和微尺度电穿孔中实现的那些,其足以驱动细胞膜孔 形成并使大分子扩散到胞质溶胶中。近红外光可以穿透组织或生物反应器 在静态或流动配置中,是无毒和非加热的,并且具有优异的空间和时间控制。PEP 技术可以提供大批量或小批量的分布式或局部目标交付,甚至是流动式交付, 将为需要生物、细胞或细胞衍生疗法的患者提供显著益处。这个晶洞 一种新的生产工艺已经发展到比传统方法多生产105倍的材料, 不仅可以评估PEP的递送能力,而且可以将其应用于体内或细胞加工用途, 未来本提案的目标是生产具有不同数量的二极管和涂层的光电转化器 并评估其PEP在体外将模型和功能性生物大分子递送至细胞而不 降低生存能力。为实现这一目标,确定了两个目标。(1)合成不同数目的硅纳米线 的pn二极管编程沿着其长度和不同的涂层,并表征其物理,化学 和照片属性。(2)演示通过PEP向细胞递送生物大分子,包括识别 具有最大效率和细胞活力的纳米线性质和PEP参数,以及 了解分布电场附近和分布电场内的细胞如何被电穿孔。功能蛋白、mRNA和 DNA货物将被递送至粘附细胞和非粘附细胞。这些结果将建立PEP作为一个可行的 一种用大的功能性货物来检测活细胞的方法,该方法使用光和分布式纳米线, 克服了其他方法的限制,使未来的临床前工作,包括在体内PEP和升- 用疾病相关的货物和靶细胞来缩放PEP。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Champion其他文献

Julie Champion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julie Champion', 18)}}的其他基金

2023 Preclinical Form and Formulation for Drug Discovery Gordon Research Conference and Gordon Research Seminar
2023年药物发现临床前形式和制剂戈登研究会议和戈登研究研讨会
  • 批准号:
    10605746
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
Photoelectroporation: Biomacromolecule delivery via nanoscale light-amplified voltage generators
光电穿孔:通过纳米级光放大电压发生器传递生物大分子
  • 批准号:
    10538761
  • 财政年份:
    2022
  • 资助金额:
    $ 18.1万
  • 项目类别:
Engineered Protein Nanocarriers for Intracellular Antibody Delivery
用于细胞内抗体递送的工程蛋白质纳米载体
  • 批准号:
    9387821
  • 财政年份:
    2017
  • 资助金额:
    $ 18.1万
  • 项目类别:
Engineering bacterially derived immunomodulants:a novel IBD therapeutic approach
工程细菌衍生的免疫调节剂:一种新的 IBD 治疗方法
  • 批准号:
    8545388
  • 财政年份:
    2012
  • 资助金额:
    $ 18.1万
  • 项目类别:
Laterally Mobile Ligands: Cellular Response to Dynamic Surfaces
横向移动配体:细胞对动态表面的响应
  • 批准号:
    7487230
  • 财政年份:
    2008
  • 资助金额:
    $ 18.1万
  • 项目类别:
Laterally Mobile Ligands: Cellular Response to Dynamic Surfaces
横向移动配体:细胞对动态表面的响应
  • 批准号:
    7586105
  • 财政年份:
    2008
  • 资助金额:
    $ 18.1万
  • 项目类别:

相似海外基金

Bioreactors to Replace Animal Testing in Bone Research
生物反应器取代骨骼研究中的动物测试
  • 批准号:
    NC/Y500562/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Training Grant
SBIR Phase I: Bioreactors for Upcycling Pyrolyzed Polystyrene Waste into Organic Fertilizer
SBIR 第一阶段:将热解聚苯乙烯废物升级为有机肥料的生物反应器
  • 批准号:
    2303842
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Standard Grant
CAREER: Unlocking Recalcitrant Carbon to Enhance Denitrification of Nonpoint Source Nitrogen in Woodchip Bioreactors
职业:释放顽固碳以增强木片生物反应器中非点源氮的反硝化
  • 批准号:
    2237947
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Continuing Grant
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
  • 批准号:
    2875161
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Studentship
Prototyping and Validating Novel Scalable Biomimetic Bioreactors for Low Carbon Cultivated Meat Production
用于低碳栽培肉生产的新型可扩展仿生生物反应器的原型设计和验证
  • 批准号:
    10072878
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Collaborative R&D
Redesigning bioreactors for sustainable bio-based manufacturing
重新设计生物反应器以实现可持续的生物基制造
  • 批准号:
    10066782
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Collaborative R&D
Real time Dual Laser Raman Reactor Analyser with Probe for key inorganic nutrients inside Microalgae Bioreactors
带探针的实时双激光拉曼反应器分析仪,用于分析微藻生物反应器内的关键无机营养物质
  • 批准号:
    10074658
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Grant for R&D
CELL EXPANSION BIOREACTORS FOR ASSAY-READY IMMUNOCOMPETENT PATIENT MODELS
用于检测准备的免疫功能正常患者模型的细胞扩增生物反应器
  • 批准号:
    10688981
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
Earthworms as ploughs and bioreactors: understanding mechanical and biogeochemical impacts for sustainable soils
蚯蚓作为犁和生物反应器:了解可持续土壤的机械和生物地球化学影响
  • 批准号:
    2884067
  • 财政年份:
    2023
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Studentship
Novel approach to production of high-value biochemicals and simultaneous removal of organic and other contaminants from waste streams using High-Rate Biomass Bioreactors
使用高速生物质生物反应器生产高价值生化产品并同时去除废物流中的有机和其他污染物的新方法
  • 批准号:
    RGPIN-2022-05332
  • 财政年份:
    2022
  • 资助金额:
    $ 18.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了