Physiology of ribosome rescue in bacteria
细菌核糖体拯救的生理学
基本信息
- 批准号:10819260
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibioticsBacteriaBacterial GenomeBacterial PhysiologyBindingBiochemicalBiologicalBiologyCaulobacter crescentusCellsChemicalsDataDevelopmentFoundationsFundingGenesGeneticGoalsGrantGrowthHealthHomologous GeneHumanHydrolysisKnowledgeMessenger RNAMolecularMolecular TargetMulti-Drug ResistanceMutation AnalysisOutcomeOxidative StressPathogenicityPathway interactionsPhylogenetic AnalysisPhysiologicalPhysiologyProcessPropertyPublishingRNAResearchRibosomal InteractionRibosomal ProteinsRibosomesRoleSmpB proteinSolidStructureSystemTerminator CodonTestingTranslatingTranslationsVirulenceWorkexperimental studyimprovedinhibitorinnovationinsightmRNA Transcript Degradationpathogenic bacteriapeptidyl-tRNApharmacologicpolypeptiderecruitsmall moleculesmall molecule inhibitortmRNAtooltranslation factor
项目摘要
Project Summary/Abstract
Ribosome rescue pathways are conserved throughout bacteria, but the reason these pathways are important for
physiology is not understood. The long-term goal of this project is to understand the function of ribosome rescue
pathways and to target these pathways for new antibiotics. The overall objective of the proposed project is to
identify interactions among components of the translation machinery that are specifically required for ribosome
rescue and under what conditions different ribosome rescue systems are required. The central hypothesis of this
work is that specific interactions within the ribosome and between the ribosome and other translation factors are
uniquely required for ribosome rescue and that alternative rescue systems are critical under environmental
conditions that cause RNA damage. The rationale for pursuing the proposed research is that it will determine
why ribosome rescue is conserved in bacteria and will enable development of new antibiotics. The central
hypothesis will be tested by pursuing the following specific aims: 1) identify the molecular interactions required
for trans-translation, 2) determine how ArfT rescues ribosomes in conjunction with either RF1 or RF2, and 3)
determine why alternative ribosome rescue systems are required. Published work and preliminary data have
identified small molecule inhibitors of trans-translation, and work in the first funded period of this grant identified
their molecular targets. Biochemical and mutational analyses will be used in Aim 1 to determine why these targets
are important for trans-translation and how the targets are disrupted by inhibitor binding. We will used structural
and biochemical experiments in Aim 2 to determine the mechanism of a new alternative ribosome rescue
pathway, ArfT, that can recruit either RF1 or RF2 to non-stop ribosomes. Our preliminary data identified
conditions where the alternative ribosome rescue factor ArfB is required in Caulobacter crescentus, even when
trans-translation is functional. We will determine the molecular basis for the ArfB requirement and determine of
other alternative ribosome rescue factors are required under similar challenges in other bacteria. The use of
small molecule inhibitors for chemical biology experiments to probe ribosome rescue is highly innovative, and
the work proposed here is significant because it will delineate the physiological requirement for ribosome rescue
pathways in bacteria and identify how these pathways can be inhibited.
项目总结/摘要
核糖体拯救途径在整个细菌中是保守的,但是这些途径对于
生理学不被理解。这个项目的长期目标是了解核糖体拯救的功能
并针对这些途径开发新的抗生素。拟议项目的总体目标是
识别核糖体特异性所需的翻译机制组件之间的相互作用
拯救以及在什么条件下需要不同的核糖体拯救系统。这个问题的核心假设是
工作是核糖体内以及核糖体与其他翻译因子之间的特异性相互作用,
这是核糖体拯救所特有的,在环境条件下,替代的拯救系统是至关重要的。
导致RNA损伤的条件。进行拟议研究的理由是,它将确定
为什么核糖体拯救在细菌中是保守的,这将使新抗生素的开发成为可能。中央
将通过追求以下具体目标来检验假设:1)确定所需的分子相互作用
对于反式翻译,2)确定ArfT如何与RF 1或RF 2结合拯救核糖体,以及3)
确定为什么需要替代核糖体拯救系统。已发表的工作和初步数据
确定了反式翻译的小分子抑制剂,并在该补助金的第一个资助期内确定了工作
它们的分子靶点。目标1将使用生化和突变分析,以确定为什么这些目标
对于反式翻译和靶点如何被抑制剂结合破坏是重要的。我们将使用结构
目的2中的生物化学实验,以确定一种新的替代核糖体拯救机制
ArfT途径,可以募集RF 1或RF 2到不停止的核糖体。我们的初步数据显示
在新月柄杆菌中需要替代核糖体拯救因子ArfB的条件下,即使当
翻译是功能性的。我们将确定ArfB要求的分子基础,并确定
在其它细菌的类似挑战下需要其它替代的核糖体拯救因子。使用
用于化学生物学实验以探测核糖体拯救的小分子抑制剂是高度创新的,
这里提出的工作是有意义的,因为它将描述核糖体拯救的生理要求
细菌中的途径,并确定如何抑制这些途径。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of 4-Br-A23187 on Bacillus subtilis cells and unilamellar vesicles reveal it to be a potent copper ionophore.
- DOI:10.1002/pmic.202200061
- 发表时间:2022-09
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation.
- DOI:10.1128/aac.01373-20
- 发表时间:2020-12-16
- 期刊:
- 影响因子:4.9
- 作者:Senges CHR;Stepanek JJ;Wenzel M;Raatschen N;Ay Ü;Märtens Y;Prochnow P;Vázquez Hernández M;Yayci A;Schubert B;Janzing NBM;Warmuth HL;Kozik M;Bongard J;Alumasa JN;Albada B;Penkova M;Lukežič T;Sorto NA;Lorenz N;Miller RG;Zhu B;Benda M;Stülke J;Schäkermann S;Leichert LI;Scheinpflug K;Brötz-Oesterhelt H;Hertweck C;Shaw JT;Petković H;Brunel JM;Keiler KC;Metzler-Nolte N;Bandow JE
- 通讯作者:Bandow JE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine M Dunham其他文献
Recombinant RNA expression
重组 RNA 表达
- DOI:
10.1038/nmeth0707-547 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:32.100
- 作者:
Christine M Dunham;Graeme L Conn - 通讯作者:
Graeme L Conn
Digging the tunnel for chemical space
挖掘化学空间的隧道
- DOI:
10.1038/nchembio.2480 - 发表时间:
2017-09-19 - 期刊:
- 影响因子:13.700
- 作者:
Ha An Nguyen;Christine M Dunham - 通讯作者:
Christine M Dunham
Christine M Dunham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine M Dunham', 18)}}的其他基金
相似海外基金
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
- 批准号:
DP230102150 - 财政年份:2023
- 资助金额:
$ 7.49万 - 项目类别:
Discovery Projects
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Australian Laureate Fellowships
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
- 批准号:
468567 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Operating Grants
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10587015 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10581945 - 财政年份:2021
- 资助金额:
$ 7.49万 - 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
- 批准号:
2599490 - 财政年份:2021
- 资助金额:
$ 7.49万 - 项目类别:
Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10358855 - 财政年份:2021
- 资助金额:
$ 7.49万 - 项目类别: