Improving AI/ML-readiness of Synthetic Data in a Resource-Constrained Setting
在资源受限的环境中提高合成数据的 AI/ML 准备度
基本信息
- 批准号:10841728
- 负责人:
- 金额:$ 25.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAfricaArtificial IntelligenceBig DataCellular PhoneChild HealthCloud ComputingComputational TechniqueCountryDataData ScienceData SetData SourcesDevelopmentDiseaseDisparity populationDocumentationEnvironmentEventFAIR principlesFundingGoalsGraphHealthHealth PolicyHealth SciencesHeterogeneityIndividualInvestmentsKenyaKnowledgeLawsMachine LearningMaternal HealthMental HealthMethodsMichiganModelingNatureOutcomePenetrationPoliticsPopulationPrivacyReadinessResearchResearch PersonnelResource-limited settingResourcesRuralStatistical DistributionsSystemTechniquesTestingTrainingUnited States National Institutes of HealthUniversitiesValidationWorkcareerdata managementdata preservationdata sharingimprovedinnovationmachine learning methodmachine learning modelmarginalized populationmultimodal dataneonatal healthnovel strategiesparent projectpopulation basedpreservationresponsesocialsocial determinantsstudent training
项目摘要
PROJECT SUMMARY / ABSTRACT
The parent project, UZIMA-DS (UtiliZing Health Information for Meaningful Impact in East Africa through Data
Science), aims to create a scalable and sustainable platform to apply novel approaches to data assimilation and
advanced artificial intelligence (AI)/machine learning (ML)-based methods to improve health outcomes in two
health domains: maternal, newborn and child health; and mental health. Led by the Aga Khan University in East
Africa (AKU) and the University of Michigan, UZIMA-DS is a U54 Research Hub funded under the NIH Data Sci-
ence for Health Discovery and Innovation in Africa Initiative. During these first two years, UZIMA-DS has focused
on acquiring and harmonizing multimodal data sources. However, we and many other DS-I Africa awardees have
encountered several barriers to efficiently and effectively creating AI-ready data sets, which include: 1) regulatory
concerns around privacy and confidentiality, 2) heterogeneity in data laws across countries limiting the accessibil-
ity of data, and 3) a lack of sufficient datasets not only for training ML models and validation but also for training
students and early career investigators for capacity building. Synthetic data, or data that is generated artificially
using computational techniques such as AI, is a promising technique that could address these barriers and ena-
ble the broad sharing of AI-ready data sets. As part of this administrative supplement, we propose to create an
AI-ready synthetic data set using one of our real UZIMA-DS data sets from Kenya: the Kaloleni-Rabai Health and
Demographic Surveillance Systems (KRHDSS). KRHDSS is a population-based demographic and health surveil-
lance system established in 2017 by AKU. Information is collected at least annually on ~40 demographic, health,
social determinants of disease, and vital events from a resident population of about 99,000 individuals. Leverag-
ing our preliminary work using a Microsoft Azure instance, we will create AI-ready synthetic datasets for research
and training and evaluate whether causal relationships in real data are preserved in synthetic datasets. The
overarching goal of this proposal is to “put data to work” by developing a roadmap for the curation and use of
AI-ready synthetic data using FAIR principles (findable, accessible, interoperable, and re‑usable) that can be eas-
ily accessed and shared for research and training purposes across the globe. Ultimately, this work has the poten-
tial to promote more effective and efficient sharing of AI-ready data globally. Using cloud infrastructure and
Health and Demographic Surveillance Systems data from rural Kenya as a use case, this work has immediate
implications for how AI-ready data can be leveraged in resource-constrained settings to improve data driven
health policy decisions for traditionally disadvantaged and marginalized groups.
项目摘要/摘要
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Obesity and Risk of Hypertension in Preadolescent Urban School Children: Insights from a Developing Country.
青春期前城市学童的肥胖和高血压风险:来自发展中国家的见解。
- DOI:10.21203/rs.3.rs-4213965/v1
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Akhtar,Samina;Khan,Shahid;Aziz,Namra;Magsi,MuhammadImran;Samad,Zainab;Iqbal,Romaina;Almas,Aysha
- 通讯作者:Almas,Aysha
COVID-19 vaccination refusal trends in Kenya over 2021.
- DOI:10.1016/j.vaccine.2022.12.066
- 发表时间:2023-01-27
- 期刊:
- 影响因子:5.5
- 作者:Rego, Ryan T.;Kenney, Brooke;Ngugi, Anthony K.;Espira, Leon;Orwa, James;Siwo, Geoffrey H.;Sefa, Christabel;Shah, Jasmit;Weinheimer-Haus, Eileen;Delius, Antonia Johanna Sophie;Pape, Utz Johann;Irfan, Furqan B.;Abubakar, Amina;Shah, Reena;Wagner, Abram;Kolars, Joseph;Boulton, Matthew L.;Hofer, Timothy;Waljee, Akbar K.
- 通讯作者:Waljee, Akbar K.
Mental health and psychological well-being of Kenyan adolescents from Nairobi and the Coast regions in the context of COVID-19.
- DOI:10.1186/s13034-023-00613-y
- 发表时间:2023-05-19
- 期刊:
- 影响因子:5.6
- 作者:Mbithi, Gideon;Mabrouk, Adam;Sarki, Ahmed;Odhiambo, Rachel;Namuguzi, Mary;Dzombo, Judith Tumaini;Atukwatse, Joseph;Kabue, Margaret;Mwangi, Paul;Abubakar, Amina
- 通讯作者:Abubakar, Amina
Comparison of logistic regression with regularized machine learning methods for the prediction of tuberculosis disease in people living with HIV: cross-sectional hospital-based study in Kisumu County, Kenya.
逻辑回归与正则化机器学习方法预测艾滋病毒感染者结核病的比较:肯尼亚基苏木县医院的横断面研究。
- DOI:10.21203/rs.3.rs-3354948/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Orwa,James;Oduor,Patience;Okelloh,Douglas;Gethi,Dickson;Agaya,Janet;Okumu,Albert;Wandiga,Steve
- 通讯作者:Wandiga,Steve
Psychometric evaluation of PHQ-9 and GAD-7 among community health volunteers and nurses/midwives in Kenya following a nation-wide telephonic survey.
- DOI:10.3389/fpsyt.2023.1123839
- 发表时间:2023
- 期刊:
- 影响因子:4.7
- 作者:Odero, Sabina Adhiambo;Mwangi, Paul;Odhiambo, Rachel;Nzioka, Brenda Mumbua;Shumba, Constance;Ndirangu-Mugo, Eunice;Abubakar, Amina
- 通讯作者:Abubakar, Amina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amina Abubakar Ali其他文献
Amina Abubakar Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amina Abubakar Ali', 18)}}的其他基金
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Eneza Data Science: Enhancing Data Science Capability and Tools for Health in East Africa
Eneza 数据科学:增强东非健康领域的数据科学能力和工具
- 批准号:
10713044 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
UZIMA-DS: UtiliZing health Information for Meaningful impact in East Africa through Data Science
UZIMA-DS:通过数据科学利用健康信息对东非产生有意义的影响
- 批准号:
10490293 - 财政年份:2021
- 资助金额:
$ 25.44万 - 项目类别:
UZIMA-DS: UtiliZing health Information for Meaningful impact in East Africa through Data Science
UZIMA-DS:通过数据科学利用健康信息对东非产生有意义的影响
- 批准号:
10659241 - 财政年份:2021
- 资助金额:
$ 25.44万 - 项目类别:
UZIMA-DS: UtiliZing health Information for Meaningful impact in East Africa through Data Science
UZIMA-DS:通过数据科学利用健康信息对东非产生有意义的影响
- 批准号:
10314084 - 财政年份:2021
- 资助金额:
$ 25.44万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study Administrative Supplement
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究行政补充
- 批准号:
10893074 - 财政年份:2023
- 资助金额:
$ 25.44万 - 项目类别:














{{item.name}}会员




