Big Data Training for Translational Omics Research
转化组学研究的大数据培训
基本信息
- 批准号:9044406
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministratorArchivesAreaAwarenessBig DataBioconductorBioinformaticsBiologicalBiologyBiomedical ResearchCase StudyClinicalCollaborationsCollectionCommunitiesComplementComputersComputing MethodologiesDataData AnalysesData CollectionEducationEducational CurriculumEducational MaterialsExplosionFoundationsGene Expression ProfileGenomeGoalsHealthHome environmentHousingHumanImageInstitutionInstructionKnowledgeMedicalMedicineParticipantPhysiciansPopulationPositioning AttributeProteomeRecordsResearchResearch PersonnelResourcesSchoolsScienceScientistSourceStatistical MethodsSurveysTechnologyThe Cancer Genome AtlasTimeTrainingTraining ProgramsUniversitiesbasebench to bedsidebiomedical scientistcomputer sciencecomputerized toolsdensitydesignepigenomeexperiencegraduate studentimprovedinterestknowledge translationpreventprogramspublic health relevancerepositoryresponseskillsstatisticstool
项目摘要
DESCRIPTION (provided by applicant): The explosion of biomedical big data (e.g. imaging, clinical records, and "omic" analyzes) that captures multiple levels of complexity has the potential to dramatically accelerate the translation of knowledge from bench to bedside. However, the effective use of these data requires skills in computer science, statistics, and bioinformatics, as well as detailed knowledge of biology and medicine to aid in the interpretation of the data analysis. Unfortunately, biomedical researchers are not trained in the computational and statistical methods needed to handle high-density biomedical big data. As a result, many biomedical scientists are frustrated by their inability to: (a) analyze big data, (b) utilize the valuable public resources containing big data, and (c) effectively communicate with computer scientists, statisticians and bioinformaticians. These barriers have significantly hampered the translational application of the large body of big data that has accumulated thus far. In order to overcome these challenges, this team proposes to create a summer training course that is built upon case studies and that is specifically designed for biomedical researchers who are novices in big data analysis. The investigators identified the need for this course in a survey of administrators and researchers at Midwest and Big Ten universities. This course will raise knowledge of the potential uses of biomedical big data and will develop skills for locating, accessing, managing, visualizing, analyzing, and integrating various types of big data that are publicly available. The proposed big data training program has three goals: (1) introduce the fundamental concepts of big data in biomedical research to raise awareness of the value of this research approach, (2) provide face-to-face instruction that develops the technical competency needed for big data science, and (3) develop educational and data analysis resources using the HUBzero platform to aid our face-to-face instruction and provide post-instruction opportunities for reinforcing and expanding technical skills. The course will exploit available big data resources and tools so that biologists can productively explore big data within a short time. The educational program will target graduate students, postdoctoral trainees, physician-scientists and biomedical scientists, with strong biomedical backgrounds but who have limited advanced coursework in statistics, bioinformatics, and computer science. This course will be centered at Purdue University, a large public university with recognized strengths in statistics and computer science, with a goal to serve scientists in the Midwest area. Also, the HUBzero platform, a unique technology developed at Purdue, will be used to house computational tools and deliver the educational program, and to lower the technical barriers that challenge participants. This approach will complement the classical curricula in biomedical training programs and serve as a foundation for more advanced training. The proposed course is directly responsive to RFA-HG-14-008 because it will enable biomedical researchers to more confidently explore existing biomedical big data, implement their own data collection and analysis plans, and communicate within research teams.
描述(由适用提供):捕获多个复杂性的生物医学大数据(例如成像,临床记录和“ OMIC”分析)的爆炸有可能显着加速知识从长凳上的知识转化。但是,有效使用这些数据需要计算机科学,统计和生物信息学方面的技能,以及对生物学和医学的详细知识,以帮助解释数据分析。不幸的是,生物医学研究人员没有接受处理高密度生物医学大数据所需的计算和统计方法。结果,许多生物医学科学家对他们无法:(a)分析大数据,(b)利用包含大数据的有价值的公共资源,以及(c)有效与计算机科学家,统计学家和生物信息学家进行沟通。这些障碍极大地阻碍了迄今为止积累的大数据的翻译应用。为了克服这些挑战,该团队提出了创建夏季培训课程的建议,该课程是建立在案例研究基础上的,并且专为大数据分析小说的生物医学研究人员而设计。调查人员在中西部和十大大学的管理人员和研究人员的调查中确定了该课程的需求。本课程将提高对生物医学大数据潜在用途的了解,并将开发用于定位,访问,管理,可视化,分析和集成各种类型的大数据的技能。 The proposed big data training program has three goals: (1) introduce the fundamental concepts of big data in biomedical research to raise awareness of the value of this research approach, (2) provide face-to-face instruction that develops the technical competency needed for big data science, and (3) develop educational and data analysis resources using the HUBzero platform to aid our face-to-face instruction and provide post-instruction opportunities for reinforcing and expanding technical skills.该课程将探索可用的大数据资源和工具,以便生物学家可以在短时间内有效地探索大数据。该教育计划将针对研究生,博士后学员,身体科学家和生物医学科学家,具有强大的生物医学背景,但在统计学,生物信息学和计算机科学方面的高级课程却有限。本课程将集中在普渡大学(Purdue University),普渡大学(Purdue University)是一所大型公立大学,在统计和计算机科学方面具有公认的优势,其目标是为中西部地区的科学家服务。此外,Purdue开发的独特技术Hubzero平台将用于容纳计算工具并提供教育计划,并降低挑战参与者的技术障碍。这种方法将补充生物医学培训计划中的经典课程,并为更高级培训提供基础。拟议的课程直接响应RFA-HG-14-008,因为它将使生物医学研究人员更自信地探索现有的生物医学大数据,实施自己的数据收集和分析计划,并在研究团队中进行交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIN ZHANG其他文献
MIN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIN ZHANG', 18)}}的其他基金
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9297305 - 财政年份:2015
- 资助金额:
$ 16.2万 - 项目类别:
Administrative Supplement to: Big Data Training for Translational Omics Research
行政补充:转化组学研究大数据培训
- 批准号:
9243817 - 财政年份:2015
- 资助金额:
$ 16.2万 - 项目类别:
相似海外基金
The Administrative Core of Prefrontal Cortex, Cognition, and Speech Symptoms in Parkinson’s disease (PRECIS-PD)
帕金森病的前额皮质、认知和言语症状的管理核心 (PRECIS-PD)
- 批准号:
10283242 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
The Jail-to-Homelessness Pipeline and Serious Mental Illness
监狱到无家可归者的管道和严重的精神疾病
- 批准号:
10442583 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
The Jail-to-Homelessness Pipeline and Serious Mental Illness
监狱到无家可归者的管道和严重的精神疾病
- 批准号:
10302128 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
The Administrative Core of Prefrontal Cortex, Cognition, and Speech Symptoms in Parkinson’s disease (PRECIS-PD)
帕金森病的前额皮质、认知和言语症状的管理核心 (PRECIS-PD)
- 批准号:
10490435 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Leveraging tumor registries and pathology specimens to facilitate genetic testing and traceback for ovarian cancer
利用肿瘤登记和病理标本促进卵巢癌的基因检测和追溯
- 批准号:
10337328 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别: