Administrative Supplement to: Big Data Training for Translational Omics Research

行政补充:转化组学研究大数据培训

基本信息

  • 批准号:
    9243817
  • 负责人:
  • 金额:
    $ 14.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The explosion of biomedical big data (e.g. imaging, clinical records, and "omic" analyzes) that captures multiple levels of complexity has the potential to dramatically accelerate the translation of knowledge from bench to bedside. However, the effective use of these data requires skills in computer science, statistics, and bioinformatics, as well as detailed knowledge of biology and medicine to aid in the interpretation of the data analysis. Unfortunately, biomedical researchers are not trained in the computational and statistical methods needed to handle high-density biomedical big data. As a result, many biomedical scientists are frustrated by their inability to: (a) analyze big data, (b) utilize the valuable public resources containing big data, and (c) effectively communicate with computer scientists, statisticians and bioinformaticians. These barriers have significantly hampered the translational application of the large body of big data that has accumulated thus far. In order to overcome these challenges, this team proposes to create a summer training course that is built upon case studies and that is specifically designed for biomedical researchers who are novices in big data analysis. The investigators identified the need for this course in a survey of administrators and researchers at Midwest and Big Ten universities. This course will raise knowledge of the potential uses of biomedical big data and will develop skills for locating, accessing, managing, visualizing, analyzing, and integrating various types of big data that are publicly available. The proposed big data training program has three goals: (1) introduce the fundamental concepts of big data in biomedical research to raise awareness of the value of this research approach, (2) provide face-to-face instruction that develops the technical competency needed for big data science, and (3) develop educational and data analysis resources using the HUBzero platform to aid our face-to-face instruction and provide post-instruction opportunities for reinforcing and expanding technical skills. The course will exploit available big data resources and tools so that biologists can productively explore big data within a short time. The educational program will target graduate students, postdoctoral trainees, physician-scientists and biomedical scientists, with strong biomedical backgrounds but who have limited advanced coursework in statistics, bioinformatics, and computer science. This course will be centered at Purdue University, a large public university with recognized strengths in statistics and computer science, with a goal to serve scientists in the Midwest area. Also, the HUBzero platform, a unique technology developed at Purdue, will be used to house computational tools and deliver the educational program, and to lower the technical barriers that challenge participants. This approach will complement the classical curricula in biomedical training programs and serve as a foundation for more advanced training. The proposed course is directly responsive to RFA-HG-14-008 because it will enable biomedical researchers to more confidently explore existing biomedical big data, implement their own data collection and analysis plans, and communicate within research teams.
 描述(由申请人提供):生物医学大数据(例如成像、临床记录和“组学”分析)的爆炸式增长,捕获了多个复杂程度,有可能大大加速知识从实验室到临床的转化。然而,这些数据的有效使用需要计算机科学,统计学和生物信息学方面的技能,以及生物学和医学的详细知识,以帮助解释数据分析。不幸的是,生物医学研究人员没有接受过处理高密度生物医学大数据所需的计算和统计方法的培训。因此,许多生物医学科学家因无法:(a)分析大数据,(B)利用包含大数据的宝贵公共资源,以及(c)与计算机科学家、统计学家和生物信息学家有效沟通而感到沮丧。这些障碍严重阻碍了迄今为止积累的大量大数据的转化应用。为了克服这些挑战,该团队建议创建一个夏季培训课程,该课程以案例研究为基础,专为大数据分析新手的生物医学研究人员设计。调查人员在对中西部和十大大学的管理人员和研究人员的调查中确定了对这门课程的需求。本课程将提高生物医学大数据的潜在用途的知识,并将开发定位,访问,管理,可视化,分析和整合各种类型的大数据是公开的技能。拟议的大数据培训计划有三个目标:(1)介绍生物医学研究中大数据的基本概念,以提高对这种研究方法价值的认识,(2)提供面对面的指导,培养大数据科学所需的技术能力,以及(3)使用HUBzero平台开发教育和数据分析资源,以帮助我们进行面对面的指导,并提供事后加强和扩大技术技能的指导机会。该课程将利用现有的大数据资源和工具,使生物学家可以在短时间内有效地探索大数据。该教育计划将针对研究生,博士后培训生,医生科学家和生物医学科学家,具有较强的生物医学背景,但在统计学,生物信息学和计算机科学方面的高级课程有限。本课程将以普渡大学为中心,普渡大学是一所大型公立大学,在统计和计算机科学方面具有公认的优势,目标是为中西部地区的科学家服务。此外,HUBzero平台是普渡大学开发的一项独特技术,将用于容纳计算工具和提供教育计划,并降低挑战参与者的技术障碍。这种方法将补充生物医学培训项目中的经典课程,并作为更高级培训的基础。拟议的课程直接响应RFA-HG-14-008,因为它将使生物医学研究人员能够更自信地探索现有的生物医学大数据,实施自己的数据收集和分析计划,并在研究团队中进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIN ZHANG其他文献

MIN ZHANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIN ZHANG', 18)}}的其他基金

Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10880158
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10785775
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10461971
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10019476
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    9793410
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10249256
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
  • 批准号:
    9297305
  • 财政年份:
    2015
  • 资助金额:
    $ 14.42万
  • 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
  • 批准号:
    9044406
  • 财政年份:
    2015
  • 资助金额:
    $ 14.42万
  • 项目类别:

相似海外基金

A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
  • 批准号:
    10841820
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
  • 批准号:
    10833895
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
  • 批准号:
    10844667
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
  • 批准号:
    10850135
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
  • 批准号:
    10896844
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
  • 批准号:
    10840220
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
  • 批准号:
    10891050
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
  • 批准号:
    10711717
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
  • 批准号:
    10811292
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study Administrative Supplement
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究行政补充
  • 批准号:
    10893074
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了