Big Data Training for Cancer Research

癌症研究大数据培训

基本信息

  • 批准号:
    10249256
  • 负责人:
  • 金额:
    $ 23.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-17 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The increasing volume of big data in cancer research has the potential to dramatically accelerate the translation of knowledge from bench to bedside. Unfortunately, most cancer researchers are unable to: (i) utilize the valuable big data that is readily available in the public domain, and (ii) extract knowledge from cancer big data through communicating with computer scientists, statisticians and bioinformaticians. Traditionally, cancer researchers are trained in the biologically related sciences that are relevant to the manifestation of the disease. This knowledge is, and remains, critical for understanding the biological and molecular mechanisms that result in the disease and that can be targeted for clinical intervention. However, historically, cancer researchers have not been trained to handle large volumes of data. There was no need; there were not many approaches that were generating large scale data. Yet, with the advent of high-throughput approaches, in particular those related to genomics, proteomics and metabolomics, a significant gap in the training of cancer researchers has become apparent – the need for skills in computer science and statistics to analyze big data and interpret results from the analyses. In the absence of quantitative training for cancer researchers, a bottleneck will remain in the translation of the large body of cancer big data to clinical practice. This need was confirmed in a needs assessment of researchers from 95 Cancer Centers sent out last year (including all 69 NCI-Designated Cancer Centers). To address the need for a big data training course, the investigators propose to build on a previously NIH-funded big data training course, to develop and deliver a new training course tailored to cancer researchers across the country. In a partnership between the Purdue University Center for Cancer Research (PCCR), the Indiana University Simon Cancer Center (IUSCC), and a group of traditionally trained biostatisticians, the team is in a unique position to leverage basic and clinical cancer centers (the only two NCI-Designated Cancer Centers in the State), to work together on this multi-disciplinary training program. In contrast to the previous successful big data training course designed for general biomedical researchers who were novices in big data science, this new course will target cancer researchers with the knowledge of big data value but lacking the quantitative skills necessary to work with it. Based on case studies from both PCCR and IUSCC researchers, the goal of the course is to help participants develop skills for managing, visualizing, analyzing, and integrating various types of cancer big data that are publicly available. This is increasingly important as more and more precision oncology- focused treatments are coming on line. With this customized big data training, cancer researchers can realize the transformative potential of big data by translating it from bench to bedside.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIN ZHANG其他文献

MIN ZHANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIN ZHANG', 18)}}的其他基金

Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10880158
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10785775
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10461971
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10019476
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    9793410
  • 财政年份:
    2019
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
  • 批准号:
    9297305
  • 财政年份:
    2015
  • 资助金额:
    $ 23.22万
  • 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
  • 批准号:
    9044406
  • 财政年份:
    2015
  • 资助金额:
    $ 23.22万
  • 项目类别:
Administrative Supplement to: Big Data Training for Translational Omics Research
行政补充:转化组学研究大数据培训
  • 批准号:
    9243817
  • 财政年份:
    2015
  • 资助金额:
    $ 23.22万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 23.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了