Big Data Training for Translational Omics Research
转化组学研究的大数据培训
基本信息
- 批准号:9297305
- 负责人:
- 金额:$ 15.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministratorArchivesAreaAwarenessBig DataBioconductorBioinformaticsBiologicalBiologyBiomedical ResearchCase StudyClinicalCollaborationsCollectionCommunitiesCompetenceComplementComputersComputing MethodologiesDataData AnalysesData CollectionData ScienceEducationEducational CurriculumEducational MaterialsExplosionFoundationsGenomeGoalsHealthHome environmentHumanImageInstitutionInstructionKnowledgeMedicalMedicineMidwestern United StatesParticipantPhysiciansPopulationPositioning AttributeProteomeRecordsResearchResearch PersonnelResourcesSchoolsScienceScientistSourceStatistical MethodsSurveysTechnical ExpertiseTechnologyThe Cancer Genome AtlasTimeTrainingTraining ProgramsUniversitiesbasebench to bedsidebig biomedical databiomedical scientistclinical phenotypecomputer sciencecomputerized toolscourse implementationdata resourcedensitydesignepigenomeexperiencegraduate studentimprovedinterestknowledge translationmetabolomepreventprogramspublic health relevancerepositoryresponseskillsstatisticstooltranscriptome
项目摘要
DESCRIPTION (provided by applicant): The explosion of biomedical big data (e.g. imaging, clinical records, and "omic" analyzes) that captures multiple levels of complexity has the potential to dramatically accelerate the translation of knowledge from bench to bedside. However, the effective use of these data requires skills in computer science, statistics, and bioinformatics, as well as detailed knowledge of biology and medicine to aid in the interpretation of the data analysis. Unfortunately, biomedical researchers are not trained in the computational and statistical methods needed to handle high-density biomedical big data. As a result, many biomedical scientists are frustrated by their inability to: (a) analyze big data, (b) utilize the valuable public resources containing big data, and (c) effectively communicate with computer scientists, statisticians and bioinformaticians. These barriers have significantly hampered the translational application of the large body of big data that has accumulated thus far. In order to overcome these challenges, this team proposes to create a summer training course that is built upon case studies and that is specifically designed for biomedical researchers who are novices in big data analysis. The investigators identified the need for this course in a survey of administrators and researchers at Midwest and Big Ten universities. This course will raise knowledge of the potential uses of biomedical big data and will develop skills for locating, accessing, managing, visualizing, analyzing, and integrating various types of big data that are publicly available. The proposed big data training program has three goals: (1) introduce the fundamental concepts of big data in biomedical research to raise awareness of the value of this research approach, (2) provide face-to-face instruction that develops the technical competency needed for big data science, and (3) develop educational and data analysis resources using the HUBzero platform to aid our face-to-face instruction and provide post-instruction opportunities for reinforcing and expanding technical skills. The course will exploit available big data resources and tools so that biologists can productively explore big data within a short time. The educational program will target graduate students, postdoctoral trainees, physician-scientists and biomedical scientists, with strong biomedical backgrounds but who have limited advanced coursework in statistics, bioinformatics, and computer science. This course will be centered at Purdue University, a large public university with recognized strengths in statistics and computer science, with a goal to serve scientists in the Midwest area. Also, the HUBzero platform, a unique technology developed at Purdue, will be used to house computational tools and deliver the educational program, and to lower the technical barriers that challenge participants. This approach will complement the classical curricula in biomedical training programs and serve as a foundation for more advanced training. The proposed course is directly responsive to RFA-HG-14-008 because it will enable biomedical researchers to more confidently explore existing biomedical big data, implement their own data collection and analysis plans, and communicate within research teams.
描述(由申请人提供):生物医学大数据(例如,成像、临床记录和“组学”分析)的爆炸性增长捕获了多个级别的复杂性,有可能极大地加速知识从工作台到床边的转换。然而,这些数据的有效利用需要计算机科学、统计学和生物信息学方面的技能,以及详细的生物学和医学知识,以帮助解释数据分析。不幸的是,生物医学研究人员没有接受过处理高密度生物医学大数据所需的计算和统计方法方面的培训。因此,许多生物医学科学家对他们无法:(A)分析大数据,(B)利用包含大数据的宝贵公共资源,以及(C)与计算机科学家、统计学家和生物信息学家进行有效沟通感到沮丧。这些障碍严重阻碍了迄今积累的大量大数据的翻译应用。为了克服这些挑战,该团队提议创建一个基于案例研究的夏季培训课程,专门为大数据分析方面的新手生物医学研究人员设计。研究人员对中西部大学和十大大学的管理人员和研究人员进行了调查,确定了开设这门课程的必要性。本课程将提高有关生物医学大数据潜在用途的知识,并将培养定位、访问、管理、可视化、分析和集成各种公开可用的大数据类型的技能。拟议的大数据培训计划有三个目标:(1)在生物医学研究中介绍大数据的基本概念,以提高人们对这种研究方法的价值的认识;(2)提供面对面的教学,培养大数据科学所需的技术能力;(3)利用HUBZO平台开发教育和数据分析资源,以帮助我们的面对面教学,并提供加强和扩展技术技能的教学后机会。该课程将利用可用的大数据资源和工具,以便生物学家能够在短时间内高效地探索大数据。该教育项目将面向研究生、博士后实习生、内科科学家和生物医学科学家,他们拥有强大的生物医学背景,但在统计学、生物信息学和计算机科学方面的高级课程有限。这门课程将集中在普渡大学,这是一所公认在统计学和计算机科学方面有优势的大型公立大学,目标是为中西部地区的科学家提供服务。此外,普渡大学开发的独特技术HUBZO平台将用于容纳计算工具和提供教育计划,并降低对参与者构成挑战的技术壁垒。这种方法将补充生物医学培训计划中的经典课程,并作为更高级培训的基础。拟议的课程直接响应RFA-HG-14-008,因为它将使生物医学研究人员能够更自信地探索现有的生物医学大数据,实施自己的数据收集和分析计划,并在研究团队内部进行交流。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Does community-based health insurance protect women from financial catastrophe after cesarean section? A prospective study from a rural hospital in Rwanda.
基于社区的健康保险在剖宫产后是否保护妇女免受金融灾难?卢旺达一家农村医院的前瞻性研究。
- DOI:10.1186/s12913-022-08101-3
- 发表时间:2022-05-31
- 期刊:
- 影响因子:2.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIN ZHANG其他文献
MIN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIN ZHANG', 18)}}的其他基金
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9044406 - 财政年份:2015
- 资助金额:
$ 15.76万 - 项目类别:
Administrative Supplement to: Big Data Training for Translational Omics Research
行政补充:转化组学研究大数据培训
- 批准号:
9243817 - 财政年份:2015
- 资助金额:
$ 15.76万 - 项目类别:
相似海外基金
EAGER: Toward a Decentralized Cross-administrator Zone Management System: Policy and Technology
EAGER:走向去中心化的跨管理员区域管理系统:政策和技术
- 批准号:
2331936 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Social Influence in Eyewitness Identification Procedures: Do Blind Administrator Behaviors Magnify the Effects of Suspect Bias?
合作研究:目击者识别程序中的社会影响:盲目的管理员行为是否会放大嫌疑人偏见的影响?
- 批准号:
2043230 - 财政年份:2021
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Social Influence in Eyewitness Identification Procedures: Do Blind Administrator Behaviors Magnify the Effects of Suspect Bias?
合作研究:目击者识别程序中的社会影响:盲目的管理员行为是否会放大嫌疑人偏见的影响?
- 批准号:
2043334 - 财政年份:2021
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Making of the base for patient safety management skill of visiting nurse administrator by the web conference system
利用网络会议系统构建出诊护士管理者患者安全管理技能基础
- 批准号:
19K10768 - 财政年份:2019
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the nursing administrator training program to improve leadership behavior focused on emotional intelligence
制定护理管理人员培训计划,以改善以情商为重点的领导行为
- 批准号:
18K17464 - 财政年份:2018
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated Network Management that Dynamically Reflects Administrator Intent
动态反映管理员意图的自动化网络管理
- 批准号:
18K18038 - 财政年份:2018
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Administrator support perceived as useful for professional growth by novice psychiatric home-visit nursing staff
新手精神科家访护理人员认为管理员支持对专业成长有用
- 批准号:
17H07005 - 财政年份:2017
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The Facts and Problems on Management of Public Museums: Validation of Designated Administrator System
公共博物馆管理的事实与问题:指定管理员制度的验证
- 批准号:
17K01212 - 财政年份:2017
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Transformation of the School Administrator Preparation and Evaluation System in the United States
美国学校管理人员培养与评价体系转型研究
- 批准号:
26780449 - 财政年份:2014
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Family Court's Supervision of Property Administrator
家庭法院对财产管理人的监督
- 批准号:
26380108 - 财政年份:2014
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




