Center for Quantitative Biology: A focus on "omics", from organisms to single cells Supplement 2
定量生物学中心:关注“组学”,从有机体到单细胞补充2
基本信息
- 批准号:10853928
- 负责人:
- 金额:$ 77.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBioinformaticsBiologicalBiological AssayBiologyBiopsyBloodCell DeathCell SeparationCellsCenters of Research ExcellenceClinical ResearchCommunicationComplexCreatinineDNA MethylationDataDiseaseEndotheliumEpitheliumFiltrationFlareFreezingGlomerulonephritisHealthHeterogeneityImmuneIn SituInfiltrationInflammatoryInjuryInjury to KidneyKidneyKidney DiseasesKnowledgeLupusLupus NephritisMacrophageMediatingMethodsMissionMolecularMorbidity - disease rateMyelogenousMyeloid CellsNational Institute of General Medical SciencesNatureOrganismOutcomePathogenesisPathogenicityPathway interactionsPatientsPopulationPopulation DensityProteinsPublishingRenal functionResearchRoleSamplingScienceSortingSpecificityStimulusStructureTechnologyTestingTissuesTranslational ResearchTubular formationUnited States National Institutes of HealthUrineburden of illnessdensitydirect applicationgranulocyteimmunopathologyinnovationinterstitialkidney dysfunctionmonocytemortalityneutrophilnon-invasive monitornovelnovel strategiespodocytepreventrecruitstemtooltranscriptome sequencingtranscriptomics
项目摘要
Project Summary / Abstract
Macrophages and granulocytes (e.g., neutrophils) are considered key players in the
pathogenesis of glomerular kidney injury, glomerulonephritis (GN). However, the intra-renal
mechanisms and sub-cellular specificity by which these myeloid cells cause glomerular injury
are not known. This large gap in knowledge stems from the limitations in approaches to capture
and profile these highly heterogeneous cells. For example, neither normal density (NDN) nor
low-density neutrophils (LDN), both implicated in GN, are not captured in scRNAseq studies of
kidneys and urine due to the loss of these cells by sample freezing. Given their heterogeneity
and importance in disease, implementing technologies that define myeloid populations in GN
kidneys and how they interact with renal structural cells is critical for understanding their
pathogenic role. Our spatial transcriptomic data reveal macrophages, NDNs, and LDNs in GN
kidneys, with unique and shared spatial organizations. Using DNA methylation (DNAm) data
from urine cells, we capture both macrophages and granulocytes in GN urine. The overall
objectives in this proposal are to: (i) define myeloid populations in GN kidneys, (ii) identify
pathogenic interactions between macrophages vs. granulocytes with renal structural cells, and
(iii) implement urine DNAm assay to profile myeloid cells in GN. The central hypothesis is that
glomerular interactions with LDNs reflect LN immunopathology and worse kidney function and
that urine DNAm will allow a less invasive approach to evaluate the pathogenic myeloid
populations. The hypothesis will be tested with two specific aims: 1) Define macrophage and
granulocyte populations and their communication pathways with structural cells in GN kidneys
and 2) Quantify and define kidney infiltrating myeloid populations in urine using DNAm. In Aim 1,
single-cell spatial transcriptomics will be used to define in situ myeloid heterogeneity in GN
kidneys by integrating bulk RNA-seq-derived transcriptomic signatures of sorted
subpopulations. Pathogenic interactions with glomerular, interstitial, and tubular endothelial and
epithelial structures will be defined. In Aim 2, macrophages and granulocytes will be quantified
in urine using unique DNAm signatures in relation to kidney function. This research is innovative
because it will propose molecular and cellular pathways involved in glomerular injury as well as
introduce a novel approach to detect pathogenic cell populations via non-invasive urine
analyses. This research is significant because it is expected to provide a scientific rationale for
targeting specific myeloid populations in GN.
项目概要/摘要
巨噬细胞和粒细胞(例如中性粒细胞)被认为是
肾小球肾损伤、肾小球肾炎(GN)的发病机制。然而,肾内
这些骨髓细胞引起肾小球损伤的机制和亚细胞特异性
不知道。知识上的巨大差距源于捕获方法的局限性
并对这些高度异质的细胞进行分析。例如,正常密度 (NDN) 和
scRNAseq 研究中未捕获与 GN 相关的低密度中性粒细胞 (LDN)
肾脏和尿液,因为样本冷冻会损失这些细胞。鉴于它们的异质性
及其在疾病中的重要性,实施定义 GN 中骨髓细胞群的技术
肾脏以及它们如何与肾结构细胞相互作用对于了解它们的关键
致病作用。我们的空间转录组数据揭示了 GN 中的巨噬细胞、NDN 和 LDN
肾脏,具有独特且共享的空间组织。使用 DNA 甲基化 (DNAm) 数据
我们从尿液细胞中捕获 GN 尿液中的巨噬细胞和粒细胞。整体
该提案的目标是:(i) 定义 GN 肾脏中的骨髓细胞群,(ii) 确定
巨噬细胞与粒细胞与肾结构细胞之间的致病相互作用,以及
(iii) 进行尿液 DNAm 测定来分析 GN 中的骨髓细胞。中心假设是
肾小球与 LDN 的相互作用反映了 LN 免疫病理学和较差的肾功能
尿液 DNAm 将允许采用侵入性较小的方法来评估致病性骨髓细胞
人口。该假设将通过两个具体目标进行检验:1)定义巨噬细胞和
GN 肾脏中粒细胞群及其与结构细胞的通讯途径
2) 使用 DNAm 量化和定义尿液中肾脏浸润的骨髓细胞群。在目标 1 中,
单细胞空间转录组学将用于定义 GN 中的原位骨髓异质性
通过整合大量 RNA-seq 衍生的转录组特征来检测肾脏
亚人群。与肾小球、间质和肾小管内皮细胞的致病相互作用
上皮结构将被定义。在目标 2 中,将对巨噬细胞和粒细胞进行定量
使用与肾功能相关的独特 DNAm 特征在尿液中进行检测。这项研究具有创新性
因为它将提出参与肾小球损伤的分子和细胞途径以及
引入一种通过非侵入性尿液检测致病细胞群的新方法
分析。这项研究意义重大,因为它有望为以下问题提供科学依据:
针对 GN 中的特定骨髓细胞群。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pan-cancer evaluation of gene expression and somatic alteration data for cancer prognosis prediction.
泛伴对癌症预测的基因表达和体细胞改变数据的评估。
- DOI:10.1186/s12885-021-08796-3
- 发表时间:2021-09-25
- 期刊:
- 影响因子:3.8
- 作者:Zheng X;Amos CI;Frost HR
- 通讯作者:Frost HR
mSphere of Influence: Learning Biology from the Radio.
- DOI:10.1128/msphere.00026-23
- 发表时间:2023-02-21
- 期刊:
- 影响因子:4.8
- 作者:
- 通讯作者:
Asymmetric Partisan Voter Turnout Games.
- DOI:10.1007/s13235-021-00384-1
- 发表时间:2021
- 期刊:
- 影响因子:1.5
- 作者:Guage C;Fu F
- 通讯作者:Fu F
Nutrient Gradients Mediate Complex Colony-Level Antibiotic Responses in Structured Microbial Populations.
- DOI:10.3389/fmicb.2022.740259
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Stevanovic, Mirjana;Boukeke-Lesplulier, Thomas;Hupe, Lukas;Hasty, Jeff;Bittihn, Philip;Schultz, Daniel
- 通讯作者:Schultz, Daniel
Highly coordinated nationwide massive travel restrictions are central to effective mitigation and control of COVID-19 outbreaks in China.
- DOI:10.1098/rspa.2022.0040
- 发表时间:2022-04
- 期刊:
- 影响因子:3.5
- 作者:Chen, Xingru;Fu, Feng
- 通讯作者:Fu, Feng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL L WHITFIELD其他文献
MICHAEL L WHITFIELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL L WHITFIELD', 18)}}的其他基金
Center for Quantitative Biology Administrative Core
定量生物学中心行政核心
- 批准号:
10434070 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Center for Quantitative Biology: A focus on "omics", from organisms to single cells
定量生物学中心:关注“组学”,从有机体到单细胞
- 批准号:
10212411 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Center for Quantitative Biology Administrative Core
定量生物学中心行政核心
- 批准号:
10212412 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Center for Quantitative Biology Administrative Core
定量生物学中心行政核心
- 批准号:
10663279 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
SARS-CoV-2 Surveillance Studies and Genome Sequencing in Rural New England
新英格兰农村地区的 SARS-CoV-2 监测研究和基因组测序
- 批准号:
10381159 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Center for Quantitative Biology: A focus on "omics", from organisms to single cells
定量生物学中心:关注“组学”,从有机体到单细胞
- 批准号:
10434069 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Enabling single molecule spatial transcriptomics with the Vizgen MERSCOPE in situ hybridization solution at Dartmouth and beyond
在达特茅斯及其他地区使用 Vizgen MERSCOPE 原位杂交解决方案实现单分子空间转录组学
- 批准号:
10581931 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
Center for Quantitative Biology: A focus on "omics", from organisms to single cells
定量生物学中心:关注“组学”,从有机体到单细胞
- 批准号:
10663278 - 财政年份:2019
- 资助金额:
$ 77.13万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 77.13万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 77.13万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 77.13万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 77.13万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 77.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




