Bioburden Predictors of Diabetic Ulcer Complications
糖尿病溃疡并发症的生物负载预测因子
基本信息
- 批准号:7480996
- 负责人:
- 金额:$ 61.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-08 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmputationAnaerobic BacteriaAntibioticsAreaArea Under CurveBiopsyBone TissueChronicClinicalClinical DataClinical ManagementClosureCommunitiesConfidence IntervalsData CollectionDepthDeteriorationDevelopmentDiabetic FootDiabetic Foot UlcerDiabetic ulcerDiagnosticDimensionsDiscriminationFoot UlcerGoalsGoldHandInfectionInflammatory ResponseInterventionInvasiveLaboratory ProceduresLiquid substanceLogistic RegressionsMeasuresMethicillin ResistanceNumbersOrganismOsteomyelitisOutcomePatientsPersonsPopulationPredictive ValuePreventionProceduresPurposeROC CurveRangeReceiver Operating CharacteristicsResearchResearch DesignResourcesRiskRoleSamplingScienceScreening procedureSensitivity and SpecificitySigns and SymptomsSpecificitySpecimenStandards of Weights and MeasuresStaphylococcus aureusSurfaceSwabTechniquesTestingTissuesVariantVirulentWeekWorkWound Healingbasecostfollow-upimprovedinnovationmicrobialpreventprognosticprospectivetoolwound
项目摘要
DESCRIPTION (provided by applicant): It is difficult to identify diabetic foot ulcers (DFU) destined for infection-related complications. The objective of this application is to develop strategies to accurately identify DFUs that are likely to proceed to develop infection-related complications. The aims are to 1) determine the prognostic efficacy of a) high microbial load, b) microbial diversity, and c) Staphylococcus aureus and anaerobes based on swab cultures obtained using Levine's technique in predicting infection-related complications among diabetic foot ulcers without signs of clinical infection; and 2) Determine the extent to which combining microbiological dimensions will improve the predictive ability above any single dimension. A prospective research design will be used to observe infection-related complications among DFUs before wound closure. A sample of 150 subjects with DFUs but without signs of clinical infection will be assessed for wound bioburden and followed for infection-related complications every two weeks until 1) wound closure, 2) DFU-related amputation, 3) loss to follow-up or 4) the end of six months of data collection. Wound bioburden has three dimensions: microbial load, microbial diversity, and presence of virulent organisms. Each dimension will be measured by quantitatively culturing swab specimens obtained using Levine's technique. Levine's technique samples fluid from deep tissue layers and has been shown to be a valid measure of wound bioburden when compared to cultures of wound tissue. Repeat measures of wound bioburden will be collected during each follow-up. In addition, the outcomes of wound deterioration, osteomyelitis, or amputation will be assessed during follow-up. ROC analysis will be used to evaluate the prognostic efficacy in terms of area under the ROC curve (AUC). Two outcomes will be considered: (a) the development of wound deterioration and/or osteomyelitis before wound closure, and (b) amputation before wound closure. A composite predictor will be developed using multivariable logistic regression. The findings from this research will improve the discrimination of DFUs at-risk from those not-at-risk for developing complications. In this way, resources can be more cost efficiently directed toward patients for whom more vigorous interventions can prevent undesirable outcomes.
描述(由申请人提供):很难确定糖尿病足溃疡(DFU)是否会导致感染相关并发症。本申请的目的是制定策略,以准确识别可能发生感染相关并发症的DFU。目的是:1)确定a)高微生物负荷、B)微生物多样性和c)金黄色葡萄球菌和厌氧菌(基于使用Levine技术获得的拭子培养物)在预测无临床感染体征的糖尿病足溃疡中的感染相关并发症方面的预后功效;和2)确定组合微生物学维度将在何种程度上提高超过任何单一维度的预测能力。将采用前瞻性研究设计观察DFU在伤口闭合前的感染相关并发症。将对150例有DFU但无临床感染体征的受试者样本进行伤口生物负载评估,并每两周随访一次感染相关并发症,直至1)伤口闭合,2)DFU相关截肢,3)失访或4)6个月数据收集结束。伤口生物负载有三个方面:微生物负载、微生物多样性和是否存在有毒微生物。将通过使用Levine技术获得的拭子样本定量培养来测量每个尺寸。Levine技术从深层组织层中采集液体样本,与伤口组织培养物相比,已被证明是伤口生物负载的有效测量方法。在每次随访期间,将收集伤口生物负载的重复测量值。此外,将在随访期间评估伤口恶化、骨髓炎或截肢的结局。ROC分析将用于评价ROC曲线下面积(AUC)方面的预后疗效。将考虑两种结局:(a)伤口闭合前伤口恶化和/或骨髓炎的发展,和(B)伤口闭合前截肢。将使用多变量逻辑回归开发复合预测因子。这项研究的结果将改善DFU风险的区分,从那些没有发展并发症的风险。通过这种方式,资源可以更有成本效益地用于患者,对他们来说,更有力的干预可以防止不良后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUE E GARDNER其他文献
SUE E GARDNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUE E GARDNER', 18)}}的其他基金
Exploratory Center of Excellence for Advancing Multimorbidity Science (CAMS)
促进多种疾病科学卓越探索中心 (CAMS)
- 批准号:
10121495 - 财政年份:2018
- 资助金额:
$ 61.8万 - 项目类别:
Center for Advancing Multimorbidity Science: Profiling risk and symptom expression to develop customized therapies for adults with multiple chronic conditions (CAMS)
促进多发病科学中心:分析风险和症状表达,为患有多种慢性病的成人开发定制疗法 (CAMS)
- 批准号:
10416002 - 财政年份:2018
- 资助金额:
$ 61.8万 - 项目类别:
Center for Advancing Multimorbidity Science: Profiling risk and symptom expression to develop customized therapies for adults with multiple chronic conditions (CAMS)
促进多发病科学中心:分析风险和症状表达,为患有多种慢性病的成人开发定制疗法 (CAMS)
- 批准号:
9762982 - 财政年份:2018
- 资助金额:
$ 61.8万 - 项目类别:
Center for Advancing Multimorbidity Science: Profiling risk and symptom expression to develop customized therapies for adults with multiple chronic conditions (CAMS)
促进多发病科学中心:分析风险和症状表达,为患有多种慢性病的成人开发定制疗法 (CAMS)
- 批准号:
10416003 - 财政年份:2018
- 资助金额:
$ 61.8万 - 项目类别:
Severe Pain During Wound Care Procedures: Model and Mechanisms
伤口护理过程中的剧烈疼痛:模型和机制
- 批准号:
9244682 - 财政年份:2015
- 资助金额:
$ 61.8万 - 项目类别:
Severe Pain During Wound Care Procedures: Model and Mechanisms
伤口护理过程中的剧烈疼痛:模型和机制
- 批准号:
9070786 - 财政年份:2015
- 资助金额:
$ 61.8万 - 项目类别:
Severe Pain During Wound Care Procedures: Model and Mechanisms
伤口护理过程中的剧烈疼痛:模型和机制
- 批准号:
8896199 - 财政年份:2015
- 资助金额:
$ 61.8万 - 项目类别:
Bioburden Predictors of Diabetic Ulcer Complications
糖尿病溃疡并发症的生物负载预测因子
- 批准号:
8070041 - 财政年份:2007
- 资助金额:
$ 61.8万 - 项目类别:
Bioburden Predictors of Diabetic Ulcer Complications
糖尿病溃疡并发症的生物负载预测因子
- 批准号:
7626756 - 财政年份:2007
- 资助金额:
$ 61.8万 - 项目类别:
Bioburden Predictors of Diabetic Ulcer Complications
糖尿病溃疡并发症的生物负载预测因子
- 批准号:
7320380 - 财政年份:2007
- 资助金额:
$ 61.8万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Research Grant














{{item.name}}会员




