Predicting Radiotherapy Outcomes by Combining Physical and Biological Factors
通过结合物理和生物因素预测放射治疗结果
基本信息
- 批准号:7622168
- 负责人:
- 金额:$ 13.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAlgorithmsAnimal ModelArchivesAreaArtsBindingBinding ProteinsBiologicalBiological AssayBiological FactorsBiological MarkersBiological MarkersBiologyBloodBlood specimenBreathingCancer PatientCategoriesCell Culture TechniquesCharacteristicsClinicalClinical TreatmentClinical TrialsCollectionCommon Terminology Criteria for Adverse EventsComplexComplicationDNA DamageDataData CollectionData SetDatabasesDetectionDevelopmentDiagnostic Neoplasm StagingDoseElectrophoretic Mobility Shift AssayEnvironmentEnvironmental Risk FactorEnzymesEventFamilyGenderGeneticGoalsGrantHistologyHousingImageImaging TechniquesInflammationInflammatoryInformation TheoryInterleukin-1 alphaInterleukin-6InterleukinsInvestigationKnowledgeLearningLinkLiteratureLocationLogistic RegressionsLungMachine LearningMalignant neoplasm of lungMapsMeasuresMethodsMetricModelingMorphologic artifactsMotionNon-Small-Cell Lung CarcinomaNon-linear ModelsNormal tissue morphologyNuclearOrganOutcomeOutcome StudyPathologyPatientsPeer ReviewPeptidyl-Dipeptidase APhasePhysicsPlayPneumoniaPopulationProteinsPulmonary Function Test/Forced Expiratory Volume 1Pulmonary function testsRadiationRadiation PneumonitisRadiation ToleranceRadiation therapyRadiotherapy ResearchRelative (related person)Relative RisksReportingResistanceReview LiteratureRiskRisk FactorsSamplingScanningSerumShapesShorthandSourceStagingStatistical ModelsStructure of parenchyma of lungSystemTechniquesTechnologyTestingTimeTransforming Growth Factor betaTransforming Growth FactorsTumor stageUncertaintyValidationWorkX-Ray Computed Tomographybasecytokinedata miningdata modelingfollow-uphigh riskimprovedinsightmathematical modelmodel designopen sourcepredictive modelingprospectiveprotein complexrepairedresponsetreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): Many radiotherapy (RT) treatments carry a significant risk of serious complications to normal tissues. Previously, efforts to predict outcome have used either physical factors (e.g., volume irradiated to high dose) or biological factors (e.g., inherent radiosensitivity), but not both. We hypothesize that combining physical treatment data with patient-specific biomarkers will increase the predictive power of RT outcomes models. We will test this hypothesis specifically for prediction of radiation pneumonitis (RP) for lung cancer patients. Because no appropriate dataset exists to test this hypothesis, under Specific Aim 1, we will conduct a prospective clinical trial for non-small-cell lung cancer patients and collect candidate physical and biological data for modeling. Biomarker families selected based on peer-reviewed literature will mainly include: (a) the levels of DNA-end binding complexes of DNA damage detection and repair proteins, which has been well correlated with radiosensitivity; and (b) pretreatment blood levels of the interleukin family of inflammatory cytokines (IL-1 alpha and IL-6) and ACE enzymes, which have also been correlated to RP. Physical data to be collected includes volumes irradiated to varying doses of the normal lung (dose-volume histogram data, collected using 4-D methods to avoid breathing artifacts), and the spatial location of the high-dose regions, both of which have been correlated with risk of RP. We will also image tumor regression over the course of RT (mid-course and at the end of RT) in order to better characterize the high doses received by normal lung tissue after tumor regression. In SA2, we test the hypothesized improvement in outcome prediction by combining biological and physical data. To select the best mathematical model, we will adapt and validate a new form of statistical model-building known as kernel-based learning. Based on our preliminary results, the kernel-based methods will likely provide a natural framework for understanding the interactions among the different physical and biological variables resulting in an effectively optimal predictive model. In summary, we propose to test the combination of biological/biomarker data and dose data to improve our ability to predict radiotherapy complications. In particular, we will use detectable blood-based biomarkers as well as treatment dose distribution characteristics to potentially improve our ability to predict (or avoid) radiation pneumonitis.
描述(由申请人提供): 许多放射疗法(RT)治疗对正常组织具有严重并发症的显著风险。以前,预测结果的努力使用了物理因素(例如,照射到高剂量的体积)或生物因素(例如,固有的放射敏感性),但不是两者。我们假设将物理治疗数据与患者特异性生物标志物相结合将增加RT结局模型的预测能力。我们将专门针对肺癌患者放射性肺炎(RP)的预测来检验这一假设。由于没有合适的数据集来检验这一假设,在特定目标1下,我们将对非小细胞肺癌患者进行前瞻性临床试验,并收集候选的物理和生物学数据用于建模。基于同行评审文献选择的生物标志物家族将主要包括:(a)DNA损伤检测和修复蛋白的DNA末端结合复合物水平,其与放射敏感性密切相关;和(B)炎性细胞因子(IL-1 α和IL-6)和ACE酶的白细胞介素家族的治疗前血液水平,其也与RP相关。要收集的物理数据包括正常肺的不同剂量照射的体积(剂量体积直方图数据,使用4-D方法收集,以避免呼吸伪影),以及高剂量区域的空间位置,这两者都与RP的风险相关。我们还将在RT过程中(RT中期和结束时)对肿瘤消退进行成像,以更好地表征肿瘤消退后正常肺组织接受的高剂量。在SA 2中,我们通过结合生物学和物理学数据来测试假设的结局预测改善。为了选择最好的数学模型,我们将采用并验证一种新的统计模型构建形式,称为基于内核的学习。根据我们的初步结果,基于核的方法可能会提供一个自然的框架,用于理解不同物理和生物变量之间的相互作用,从而产生有效的最佳预测模型。总之,我们建议测试生物/生物标志物数据和剂量数据的组合,以提高我们预测放疗并发症的能力。特别是,我们将使用可检测的血液生物标志物以及治疗剂量分布特征,以潜在地提高我们预测(或避免)放射性肺炎的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 13.15万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 13.15万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10669029 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 13.15万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10245972 - 财政年份:2018
- 资助金额:
$ 13.15万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
9594556 - 财政年份:2018
- 资助金额:
$ 13.15万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 13.15万 - 项目类别:
Research Grant














{{item.name}}会员




