Project 4: Arsenic and Manganese Mobility: Land Use, Redox Shifts

项目 4:砷和锰的流动性:土地利用、氧化还原变化

基本信息

  • 批准号:
    7932378
  • 负责人:
  • 金额:
    $ 26.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-12 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

Tens of millions of people in the Ganges Delta continue to drink groundwater that is dangerously contaminated with arsenic and manganese. We estimate that in Bangladesh, if consumption of contaminated water continues, the prevalence of arsenicosis and skin cancer will be approximately 2 million and 100,000 cases per year, respectively, and the incidence of death from cancer induced by arsenic will be approximately 3,000 cases per year4. Although less attention has been given to manganese, dangerous levels of manganes are also common in Bangladesh's groundwater. In their landmark survey of groundwater chemistry, the BritisH Geological Survey2 found that manganese and arsenic are the two contaminants that routinely exceed safe concentrations in Bangladesh, and recent epidemiological work has shown that manganese may damage the neurological function of Bangaldeshi children5. Bangladesh is an ideal field site for studying processes that mobilize toxic metals into the environment under geochemical reducing conditions. The anoxic groundwater conditions of Bangladesh contrast to the Ta Creek site of Project 2, where mining has exposed large quantities of minerals to rapid oxidation. In Bangladesh, construction of irrigated rice fields and ponds has introducing large inflows of anoxic, organic-ric water. This shift has occurred over the last forty years and, with the advent of irrigation pumping, the residence time of groundwater is now also on the order of decades to a century. Consequentially, the effects of these chemical alterations to recharge water are now moving through the groundwater system and driving biogeochemical process that can be observed to both mobilize and sequester toxic metals. In this proposed Superfund Basic Research Program (SBRP), our research will address how land use and groundwater transport control arsenic and manganese concentrations in drinking water. These questions lie z the intersection of hydrology and biogeochemistry and are key unresolved questions for understanding metal mobilization in the environment. Over the last decade, we have gained a nuanced understanding of the static geochemical characteristics of arsenic-contaminated aquifers and have characterized the rapid microbialmediated response to chemical perturbations in sediment incubation experiments. However, remarkably little known about basic aspects of hydrogeology that are vital for understanding the evolution of groundwater chemistry along flow paths. Although water-balance data exist from an agricultural perspective6, we do not know how the solute fluxes that drive manganese and arsenic mobility enter the aquifer, what patterns groundwater flow follows, or how solutes mix across different flow paths. Little is known about deeper groundwater flow, and indeed, basic issues such as the significance of regional flow7"9 and groundwater pumping 10~12 are still controversial. At our field area, we have recently quantified the seasonal hydrologic cycle by which aquifers are recharged and discharge. In this project, we will build on this water balance to characterize the locations and biogeochemical conditions where arsenic and manganese are mobilized as we as the subsequent transport of these toxins through the complex transient three-dimensional pattern of streamlines that deliver them to drinking-water wells. As part of our effort, we will work to advance two technologies that have the potential for widespread application. We will develop new methods for using sensors to monitor shifting biogeochemical conditions, and we will experiment with new methods for in-situ remediation of arsenic and manganese. A network of probes will be constructed to monitor, at high temporal resolution, changing soil conditions over hours, seasons and years. We will focus on practical issues of limiting drift and biofouling and will integrate the geochemical probes with our successful network of vadose-zone hydraulic sensors. Our in situ remediation experiments will focus on push-pull well-injection methods that use oxidizing agents to create "filters" around well screens to adsorb arsenic by coating aquifer sediments with precipitated manganese and iron oxides.
恒河三角洲数千万人继续饮用危险的地下水

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES F HARVEY其他文献

CHARLES F HARVEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES F HARVEY', 18)}}的其他基金

Project 4: Arsenic and Manganese Mobility: Land Use, Redox Shifts
项目 4:砷和锰的流动性:土地利用、氧化还原变化
  • 批准号:
    8254503
  • 财政年份:
  • 资助金额:
    $ 26.3万
  • 项目类别:
Project 4: Arsenic and Manganese Mobility: Land Use, Redox Shifts
项目 4:砷和锰的流动性:土地利用、氧化还原变化
  • 批准号:
    8451459
  • 财政年份:
  • 资助金额:
    $ 26.3万
  • 项目类别:
Project 4: Arsenic and Manganese Mobility: Land Use, Redox Shifts
项目 4:砷和锰的流动性:土地利用、氧化还原变化
  • 批准号:
    8377619
  • 财政年份:
  • 资助金额:
    $ 26.3万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了