Lung Sparing for SBRT with beam's-eye-view images and real time tumor tracking

SBRT 的肺保留,具有射束视野图像和实时肿瘤跟踪

基本信息

  • 批准号:
    8191279
  • 负责人:
  • 金额:
    $ 23.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-06 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): More people in the U.S. die from lung cancer than from prostate, breast, colon and rectum cancers combined. Of the estimated 187,000 people in the U.S. who were diagnosed with non-small cell lung cancer (NSCLC) in 2009, over 37,000 of them presented with localized or early stage disease. This fraction is expected to grow as methods of early detection improve and become more widely disseminated. Stereotactic body radiation therapy (SBRT) has been shown to provide excellent local control (85%-95%) for early-stage lung cancer patients. However, a recent phase II study found Grade 3 or greater toxicities in a significant fraction of the patients, particularly those with centrally located tumors. Studies have shown that decreases in SBRT margins can significantly reduce the probability of normal tissue complications. As SBRT is increasingly becoming the therapy of choice for early-stage, localized non-small cell lung cancer, reducing the harmful side effects becomes increasingly important. We are proposing a novel failsafe technology to reduce toxicity while retaining local control for this growing population of patients. Our hypothesis is that tracking lung tumors directly during SBRT, using beam's-eye-view (BEV) imaging coupled with a dynamic multileaf collimator (DMLC), will lead to clinically significant normal tissue sparing. The current proposal is the first to employ an advanced multi- template marker-less BEV tracking algorithm to derive the real-time tumor location for DMLC delivery. Clinical benefits of the multi-template marker-less innovation include 1) automatic selection of relevant landmarks, 2) continuous tracking during deformations, rotations and partial obscurations, 3) no additional imaging dose to the patient, 4) direct imaging of the entire tumor, and 5) no need for invasive fiducial implantations and the associated adverse effects. This represents a substantial improvement over previous techniques. The therapeutic advantage will be quantified experimentally in an anthropomorphic phantom system under clinical conditions. The end result will be an integrated real-time target tracking and dynamic delivery system for radiation therapy as well as quantification of the anticipated clinical benefits. Clinical integration with the DMLC tracking is a challenging engineering problem with a measurable positive impact on human health on a large scale. This project represents well the ideals of the NIBIB to support research and development in the physical sciences and engineering for the improvement of human health. PUBLIC HEALTH RELEVANCE: The goal of this project is to quantify the potential clinical benefits of tracking early stage lung tumors with the therapeutic radiation beam in order to avoid over irradiation of healthy tissues during treatment. Our proposed method is the safest, least intrusive to have been proposed. If found to be successful, the technique could be applied to other anatomical sites, providing better outcomes for a very large number of cancer patients.
描述(由申请人提供):在美国,死于肺癌的人比死于前列腺癌、乳腺癌、结肠癌和直肠癌的人加起来还要多。2009年,美国估计有187,000人被诊断为非小细胞肺癌(NSCLC),其中超过37,000人表现为局部或早期疾病。随着早期检测方法的改进和更广泛的传播,这一比例预计还会增加。立体定向全身放射治疗(SBRT)已被证明对早期肺癌患者提供良好的局部控制(85%-95%)。然而,最近的一项II期研究发现,3级或更高的毒性在很大一部分患者中,特别是那些位于中心位置的肿瘤。研究表明,减少SBRT切缘可以显著降低正常组织并发症的发生概率。随着SBRT越来越多地成为早期局限性非小细胞肺癌的治疗选择,减少有害副作用变得越来越重要。我们正在提出一种新的故障安全技术,以减少毒性,同时保留对不断增长的患者群体的局部控制。我们的假设是,在SBRT期间,使用光束眼视图(BEV)成像和动态多叶准直仪(DMLC)直接跟踪肺肿瘤,将导致临床上显著的正常组织保留。目前的建议是第一个采用先进的多模板无标记BEV跟踪算法来获得DMLC递送的实时肿瘤位置。无标记的多模板创新的临床益处包括:1)自动选择相关标志,2)在变形、旋转和部分遮挡时连续跟踪,3)患者无需额外的成像剂量,4)整个肿瘤的直接成像,5)无需侵入性基底植入和相关的不良反应。这比以前的技术有了很大的改进。该治疗优势将在临床条件下的拟人化幻体系统中进行实验量化。最终的结果将是一个集成的实时目标跟踪和动态传递系统,用于放射治疗以及量化预期的临床效益。与DMLC跟踪的临床整合是一个具有挑战性的工程问题,对大规模的人类健康具有可衡量的积极影响。该项目很好地体现了NIBIB支持物理科学和工程研究与开发以改善人类健康的理想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross I. Berbeco其他文献

RETRACTED ARTICLE: Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery
撤回文章:放疗对肿瘤血管的选择性启动增强纳米药物递送
  • DOI:
    10.1038/s41598-019-50538-w
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Sijumon Kunjachan;Shady Kotb;Robert Pola;Michal Pechar;Rajiv Kumar;Bijay Singh;Felix Gremse;Reza Taleeli;Florian Trichard;Vincent Motto-Ros;Lucie Sancey;Alexandre Detappe;Sayeda Yasmin-Karim;Andrea Protti;Ilanchezhian Shanmugam;Thomas Ireland;Tomas Etrych;Srinivas Sridhar;Olivier Tillement;Mike Makrigiorgos;Ross I. Berbeco
  • 通讯作者:
    Ross I. Berbeco

Ross I. Berbeco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross I. Berbeco', 18)}}的其他基金

Cross-Training Core (ROBIN-NEST)
交叉训练核心 (ROBIN-NEST)
  • 批准号:
    10712297
  • 财政年份:
    2023
  • 资助金额:
    $ 23.28万
  • 项目类别:
Translation of a Bismuth-Gadolinium Nanoparticle for MR-guided Radiation Therapy
用于 MR 引导放射治疗的铋钆纳米颗粒的转化
  • 批准号:
    10359706
  • 财政年份:
    2020
  • 资助金额:
    $ 23.28万
  • 项目类别:
Translation of a Bismuth-Gadolinium Nanoparticle for MR-guided Radiation Therapy
用于 MR 引导放射治疗的铋钆纳米颗粒的转化
  • 批准号:
    10626724
  • 财政年份:
    2020
  • 资助金额:
    $ 23.28万
  • 项目类别:
Gold nanoparticles as vascular disruptig agents in radiation therapy of NSCLC
金纳米粒子作为血管破坏剂在非小细胞肺癌放射治疗中的应用
  • 批准号:
    9026582
  • 财政年份:
    2015
  • 资助金额:
    $ 23.28万
  • 项目类别:
Gold nanoparticles as vascular disruptig agents in radiation therapy of NSCLC
金纳米粒子作为血管破坏剂在非小细胞肺癌放射治疗中的应用
  • 批准号:
    8893262
  • 财政年份:
    2015
  • 资助金额:
    $ 23.28万
  • 项目类别:
A novel flat-panel detector for advanced on-board radiation therapy imaging
用于先进机载放射治疗成像的新型平板探测器
  • 批准号:
    10652362
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:
A high efficiency imager for real-time lung cancer monitoring during radiotherapy
用于放射治疗过程中实时肺癌监测的高效成像仪
  • 批准号:
    9318469
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:
A novel flat-panel detector for advanced on-board radiation therapy imaging
用于先进机载放射治疗成像的新型平板探测器
  • 批准号:
    10202493
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:
A high efficiency imager for real-time lung cancer monitoring during radiotherapy
用于放射治疗过程中实时肺癌监测的高效成像仪
  • 批准号:
    9358862
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:
A novel flat-panel detector for advanced on-board radiation therapy imaging
用于先进机载放射治疗成像的新型平板探测器
  • 批准号:
    10428566
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了