Automatic Quantitative Analysis of MR Images of the Knee in Osteoarthritis

骨关节炎膝关节 MR 图像的自动定量分析

基本信息

  • 批准号:
    8113619
  • 负责人:
  • 金额:
    $ 19.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Osteoarthritis (OA) is the most common form of joint disease and a major cause of long-term disability in the United States (US). It is estimated that 2.5% of the adult population have symptomatic knee or hip OA. Over two-thirds of the 7.8 million OA patients in the US who seek treatment have moderate to severe joint involvement and would benefit from a therapy which arrests or delays cartilage loss. The etiology of OA is still partially unclear: While genetic factors are believed to underlie a significant proportion of OA cases, the majority of occurrences may not be genetically predetermined. OA is influenced by diet, body condition, or physical stress experienced (due to injury or overuse of a joint). Patient condition may therefore likely be improved or further progression prevented by an early identification of OA progression, combined with effective therapies. However, the current armamentarium of OA therapies merely relieves the inflammation and painful symptoms of OA but does not suppress the ongoing degenerative process. There is no known cure for osteoarthritis and further drug research is essential to help OA patients. Cartilage loss is believed to be the dominating factor in OA. While the standard radiography-based analysis method relies on joint-space width as a surrogate measure for cartilage thickness, an increasing body of literature supports the use of MRI as a primary imaging method to evaluate progression of osteoarthritis. MRI is able to directly measure cartilage volume and thickness. Being a three-dimensional imaging modality it allows, unlike x-ray projection images, for a localized analysis of imaging data in the full three-dimensional spatial context. Significant advances in MRI have resulted in the ability to quantify cartilage morphology and thereby provide a means to evaluate potential effects of pharmacologic intervention on OA progression. To aid drug development and to help subsequent regulatory approval, accurate, quantitative methods are needed to rapidly screen MR imaging data. To be time- and cost-effective, computer-assisted 3D image analysis is essential. However, most image-analysis methods for OA still require significant human intervention, precluding the comprehensive analysis of large databases as for example acquired by the Osteoarthritis Initiative. A strategy that has been beneficial in studies of the brain is the use of atlases to assist in data analysis. Following such success we propose the creation of population-based bone and cartilage atlases to facilitate bone and cartilage segmentation and to allow for localized data analysis by representing imaging data in a common anatomical coordinate system. We will use the developed methods to analyze cartilage thickness and to perform correlations with clinical variables. Developed software tools will be distributed in open-source form. PUBLIC HEALTH RELEVANCE: Osteoarthritis (OA) is a debilitating disease, with millions of people affected in the US alone. While large-scale OA studies by the Osteoarthritis Initiative and Pfizer have acquired a breathtaking wealth of data, a comprehensive analysis of the imaging data has proven difficult, due to the unavailability of robust, fully-automatic computer analysis methods. This project will develop such automatic image analysis tools to allow for the efficient extraction of quantitative measures from magnetic resonance images, to ultimately aid drug development to help patients afflicted by a disabling disease without a current cure.
描述(由申请人提供):骨关节炎(OA)是最常见的关节疾病,也是美国(US)长期残疾的主要原因。据估计,2.5%的成年人患有症状性膝关节或髋关节OA。在美国寻求治疗的780万OA患者中,超过三分之二的患者患有中度至重度关节受累,并将从阻止或延迟软骨丧失的治疗中受益。OA的病因仍部分不清楚:虽然遗传因素被认为是很大一部分OA病例的基础,但大多数发生可能不是遗传预定的。OA受饮食、身体状况或身体压力(由于关节损伤或过度使用)的影响。因此,通过早期识别OA进展并结合有效治疗,患者病情可能得到改善或预防进一步进展。然而,目前的OA治疗方法仅缓解OA的炎症和疼痛症状,但不能抑制正在进行的退行性过程。骨关节炎没有已知的治愈方法,进一步的药物研究对帮助OA患者至关重要。骨关节炎的主要病因是骨钙素的丢失。虽然标准的基于X线摄影的分析方法依赖于关节间隙宽度作为软骨厚度的替代指标,但越来越多的文献支持使用MRI作为评价骨关节炎进展的主要成像方法。MRI能够直接测量软骨体积和厚度。作为一种三维成像模式,与X射线投影图像不同,它允许在全三维空间背景下对成像数据进行局部分析。MRI的重大进展使得能够量化软骨形态,从而提供了一种评价药物干预对OA进展的潜在影响的方法。为了帮助药物开发并帮助随后的监管批准,需要准确的定量方法来快速筛选MR成像数据。为了节省时间和成本,计算机辅助3D图像分析至关重要。然而,大多数OA的图像分析方法仍然需要大量的人为干预,排除了对大型数据库的综合分析,例如骨关节炎倡议所获得的。在大脑研究中,一个有益的策略是使用地图集来帮助数据分析。在这样的成功之后,我们建议创建基于人口的骨和软骨图谱,以促进骨和软骨分割,并允许通过在一个共同的解剖坐标系中表示成像数据进行本地化数据分析。我们将使用开发的方法来分析软骨厚度,并与临床变量进行相关性分析。开发的软件工具将以开放源码形式分发。 公共卫生相关性:骨关节炎(OA)是一种使人衰弱的疾病,仅在美国就有数百万人受到影响。虽然骨关节炎倡议和辉瑞公司的大规模OA研究已经获得了惊人的丰富数据,但由于缺乏强大的全自动计算机分析方法,对成像数据进行全面分析已被证明是困难的。该项目将开发这样的自动图像分析工具,以允许从磁共振图像中有效提取定量测量,最终帮助药物开发,以帮助患有致残性疾病而目前无法治愈的患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Niethammer其他文献

Marc Niethammer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Niethammer', 18)}}的其他基金

Large-scale automatic analysis of the OAI magnetic resonance image dataset
OAI磁共振图像数据集的大规模自动分析
  • 批准号:
    9751768
  • 财政年份:
    2017
  • 资助金额:
    $ 19.5万
  • 项目类别:
Large-scale automatic analysis of the OAI magnetic resonance image dataset
OAI磁共振图像数据集的大规模自动分析
  • 批准号:
    9966876
  • 财政年份:
    2017
  • 资助金额:
    $ 19.5万
  • 项目类别:
Large-scale automatic analysis of the OAI magnetic resonance image dataset
OAI磁共振图像数据集的大规模自动分析
  • 批准号:
    9368542
  • 财政年份:
    2017
  • 资助金额:
    $ 19.5万
  • 项目类别:
Automatic Quantitative Analysis of MR Images of the Knee in Osteoarthritis
骨关节炎膝关节 MR 图像的自动定量分析
  • 批准号:
    8290549
  • 财政年份:
    2011
  • 资助金额:
    $ 19.5万
  • 项目类别:
Developmental Brain Atlas Tools and Data Applied to Humans and Macaques
应用于人类和猕猴的发育脑图谱工具和数据
  • 批准号:
    8454496
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:
Developmental Brain Atlas Tools and Data Applied to Humans and Macaques
应用于人类和猕猴的发育脑图谱工具和数据
  • 批准号:
    8303320
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:
NETWORK-BASED IMAGING BIOMARKERS IN SPORADIC DYSTONIA
散发性肌张力障碍中基于网络的成像生物标志物
  • 批准号:
    8167287
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:
Developmental Brain Atlas Tools and Data Applied to Humans and Macaques
应用于人类和猕猴的发育脑图谱工具和数据
  • 批准号:
    8644910
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:
Developmental Brain Atlas Tools and Data Applied to Humans and Macaques
应用于人类和猕猴的发育脑图谱工具和数据
  • 批准号:
    8139055
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:
Developmental Brain Atlas Tools and Data Applied to Humans and Macaques
应用于人类和猕猴的发育脑图谱工具和数据
  • 批准号:
    8860552
  • 财政年份:
    2010
  • 资助金额:
    $ 19.5万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了