Investigating Mechanism of Intracellular Rotational Transport with Optical T

利用光 T 研究细胞内旋转运输的机制

基本信息

  • 批准号:
    8368031
  • 负责人:
  • 金额:
    $ 21.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): With the increased use of engineered nanoparticles in medicine (diagnostics and therapeutics), electronics, cosmetics, and textiles and the corresponding awareness of the toxicity from such nanoparticles, there is a critical need to develop methods to evaluate their toxicity, especially at low concentrations that cause oxidative stress and adverse long-term health effects. Macrophages are the primary defense cells in the lung responsible for uptake, degradation and clearance of foreign particles, all biophysical processes which rely upon an intact cytoskeleton. Impairment of these biophysical processes due to nanoparticle-mediated cytoskeletal oxidation contributes to toxicity via reduced particulate clearance and inflammation. This inflammation and associated overproduction of reactive oxygen species further oxidize RNA/DNA/proteins, leading to fibrosis, mutagenesis and lung cancer. To study how macrophage uptake and transport are affected by toxic nanoparticles, we have developed a novel technique to track intracellular transport of phagocytosed magnetically modulated optical nanoprobes (MagMOONs). These MagMOONs are micron sized tracer particles with one hemisphere coated by gold creating an orientation-dependent scattering and fluorescence signal. Tracking rotational transport via intensity changes allows analysis of many particles simultaneously even at low magnification (e.g. endoscopy). Results from a related technique pioneered by Dr. Miller (Co-I) demonstrate that intracellular rotation rate is a powerful indicator for macrophage health in vivo, and that rotatio is impaired by toxic nanoparticles in vitro. However, Dr. Miller's technique measures only the average transport-mediated rotational diffusion rate from ensembles of millions of cells, and is unable to localize particles or observe motion of individual particles and cells. The objective of this proposal is to extend the biophysical rotation methods to single particles and localized regions via optical tracking of the MagMOONs. Single particle studies will provide a more detailed mechanistic model for intracellular transport and NP- induced cytoskeletal oxidation. Our central hypothesis is that differences in particulate matter composition affect intracellular phagosome transport via ROS generation. These local cytoskeletal oxidations, in concert with the oxidation of secondary messengers and the depletion of antioxidants, cause global cytoskeletal damage and dysfunction, DNA damage, and cell death. We will test this hypothesis by studying the effect of nanoparticle composition on the motion and transport of single magnetic tracer particles in macrophages. We will also use our assay to study the protective effects of ROS scavengers such as NAC. By optically tracking MagMOONs in tissue phantoms we can also show feasibility for eventual in vivo detection in animal models with fewer tracer particles and localization of the particles in the lungs through endoscopy and transdermal X- ray excited optical luminescence (XEOL) imaging. The proposed research is significant because the technique developed in this project will have important applications for detecting and understanding nano-toxicity. PUBLIC HEALTH RELEVANCE: This research project develops a novel biophysical tool for evaluating the toxicity of engineered and environmental nanoparticles within individual cells. The proposed research is relevant to public health because we develop a novel bioanalytical imaging technique to measure nanoparticle mediated cytoskeletal dysfunction and damage (toxicity) on immune system cells. Specifically, we measure toxicity of copper oxide and titanium dioxide which are widely used and have important ramifications for human health.
描述(由申请人提供):随着工程纳米颗粒在医学(诊断和治疗)、电子、化妆品和纺织品中的使用增加,以及对此类纳米颗粒毒性的相应认识,迫切需要开发评估其毒性的方法,特别是在导致氧化应激和不良长期健康影响的低浓度下。巨噬细胞是肺中负责吸收、降解和清除外来颗粒的主要防御细胞,所有生物物理过程都依赖于完整的细胞骨架。由于纳米颗粒介导的细胞骨架氧化导致的这些生物物理过程的损害通过减少颗粒清除和炎症而导致毒性。这种炎症和相关的活性氧物质的过度产生进一步氧化RNA/DNA/蛋白质,导致纤维化,诱变和肺癌。为了研究巨噬细胞的摄取和运输如何受到有毒纳米颗粒的影响,我们开发了一种新的技术来跟踪吞噬的磁调制光学纳米探针(MagMOONs)的细胞内运输。这些MagMOON是微米尺寸的示踪粒子,其中一个半球被金包裹,产生依赖于方向的散射和荧光信号。通过强度变化跟踪旋转运输允许同时分析许多颗粒,即使在低放大率下(例如内窥镜检查)。由米勒博士(Co-I)开创的相关技术的结果表明,细胞内旋转速率是体内巨噬细胞健康的有力指标,并且体外毒性纳米颗粒会损害旋转。然而,米勒博士的技术仅测量来自数百万细胞集合的平均转运介导的旋转扩散速率,并且无法定位颗粒或观察单个颗粒和细胞的运动。该提案的目的是通过对MagMOON的光学跟踪,将生物物理旋转方法扩展到单个粒子和局部区域。单粒子研究将为细胞内转运和NP诱导的细胞骨架氧化提供更详细的机理模型。我们的中心假设是颗粒物组成的差异通过ROS的产生影响细胞内吞噬体转运。这些局部细胞骨架氧化,与第二信使的氧化和抗氧化剂的消耗相一致,导致整体细胞骨架损伤和功能障碍、DNA损伤和细胞死亡。我们将通过研究纳米颗粒组成对巨噬细胞中单个磁性示踪颗粒的运动和运输的影响来验证这一假设。我们还将使用我们的测定来研究ROS清除剂如NAC的保护作用。通过在组织模型中光学跟踪MagMOON,我们还可以显示在动物模型中最终体内检测的可行性,其中具有较少的示踪剂颗粒,并且通过内窥镜检查和透皮X射线激发光致发光(XEOL)成像将颗粒定位在肺中。这项研究是有意义的,因为在这个项目中开发的技术将有重要的应用,检测和理解纳米毒性。 公共卫生相关性:该研究项目开发了一种新的生物物理工具,用于评估单个细胞内工程和环境纳米颗粒的毒性。这项研究与公共卫生有关,因为我们开发了一种新的生物分析成像技术来测量纳米颗粒介导的细胞骨架功能障碍和免疫系统细胞的损伤(毒性)。具体而言,我们测量广泛使用并对人类健康有重要影响的氧化铜和二氧化钛的毒性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning Localized Surface Plasmon Resonance Wavelengths of Silver Nanoparticles by Mechanical Deformation.
Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death.
Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy.
  • DOI:
    10.1080/17435390.2017.1293750
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Angelé-Martínez C;Nguyen KV;Ameer FS;Anker JN;Brumaghim JL
  • 通讯作者:
    Brumaghim JL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY N ANKER其他文献

JEFFREY N ANKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY N ANKER', 18)}}的其他基金

X-ray Visualized Implanted Sensor for Prosthetic Joint Infection (X-VIS-PJI)
用于假体关节感染的 X 射线可视化植入传感器 (X-VIS-PJI)
  • 批准号:
    10547368
  • 财政年份:
    2022
  • 资助金额:
    $ 21.63万
  • 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
  • 批准号:
    9763460
  • 财政年份:
    2016
  • 资助金额:
    $ 21.63万
  • 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
  • 批准号:
    9159723
  • 财政年份:
    2016
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    8882465
  • 财政年份:
    2015
  • 资助金额:
    $ 21.63万
  • 项目类别:
Telluride Science Research Meeting on "Frontiers in Biomagnetic Particles III", i
碲化物科学研究会议“生物磁性粒子前沿III”,i
  • 批准号:
    8597691
  • 财政年份:
    2013
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7161313
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7323310
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7056609
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    8742734
  • 财政年份:
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    9069877
  • 财政年份:
  • 资助金额:
    $ 21.63万
  • 项目类别:

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 21.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 21.63万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 21.63万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 21.63万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 21.63万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 21.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 21.63万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 21.63万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 21.63万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 21.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了