Evolution of cell cycle control: triangulating the last eukaryotic common ancestor

细胞周期控制的进化:最后一个真核共同祖先的三角测量

基本信息

  • 批准号:
    9792385
  • 负责人:
  • 金额:
    $ 33.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project summary Cell cycle control in yeast and animals (`Opisthokonts') is well understood, in broad principles as well as specific conserved mechanisms. However, in eukaryotic evolution, yeasts are more closely related to animals than to other eukaryotic kingdoms. Therefore, insights from Opisthokonts might apply poorly to earlier- diverging branches such as the plant kingdom, which is absolutely essential to life on earth. It is of great significance to understand cell cycle control in non-Opisthokont eukaryotes, both to understand these important kingdoms, and to elucidate the evolution of cell cycle control from the last eukaryotic common ancestor, illuminating what features of cell cycle control are truly ancestral and fundamental. Here I propose use of a microbial `plant', the green alga Chlamydomonas reinhardtii, to carry out a broad-spectrum genetic screen to molecularly identify cell cycle control genes. We will use these mutants to carry out functional analysis to determine similarities and differences from the Opisthokont paradigm. There are two reasons for studying Chlamydomonas in this context: (1) it's much more closely related to land plants than other microbial models; (2) it provides a model organism to study ancient pathways that were lost in fungal lineages due to rapid evolution, such as cilia, the G1/S control network (cyclin D, Rb, E2F/DP). To attack this problem, we have developed an efficient pipeline for isolation, identification and analysis of conditional mutations in cell cycle control genes. The procedures integrate classical genetics with robotics, next-generation sequencing and novel bioinformatics approaches for rapid and efficient molecular identification of hundreds of essential genes (~150 identified to date, with many more in the pipeline). Mutant screens are prerequisite for in-depth analysis of specific biological pathways, to provide a well- populated `parts' list and initial functional classification based on simple phenotypic assays. As the project progresses, in addition to aiming for a comprehensive cell cycle collection, we are focusing on specific genes and pathways, with priority to those that are plant-kingdom-specific. We will examine the cyclin-Cdk-APC control system, where our results in Chlamydomonas and previous results in land plants indicate substantial conservation but also significant divergence from the yeast/animal model. In addition, we will collaborate to characterize mechanisms of Chlamydomonas cytokinesis. Cytokinesis outside of yeast/animals proceeds without an actomyosin contractile ring. We have evidence from characterizing mutants already obtained for the role of actin and actin-interacting components. For both these aims, we will tag key proteins with fluorescent epitopes to allow subcellular localization in time-lapse microscopy, in wild type and appropriate mutant backgrounds, and analyze regulation of protein abundance and function through the cell cycle. Clusters of mutants have already revealed essential pathways that will be further studied, including pathways controlling cell cycle commitment, mitotic progression and cytokinesis.
项目摘要 酵母和动物(“后鞭毛体”)中的细胞周期控制在广泛的原则以及 特定的保守机制。然而,在真核生物进化中,酵母与动物的关系更为密切 而不是其他真核生物因此,后齿兽的见解可能不适用于早期- 植物王国是地球上生命不可或缺的组成部分。具有重要 理解非后角类真核生物细胞周期控制的意义, 重要的王国,并阐明细胞周期控制的进化,从最后的真核生物共同的, 祖先,阐明了细胞周期控制的哪些特征是真正的祖先和根本。 在这里,我建议使用一种微生物“植物”,即绿色莱茵衣藻,来进行 广谱遗传筛选,从分子水平识别细胞周期控制基因。我们将利用这些变种人 进行功能分析,以确定与后鞭毛范式的相似性和差异。那里 在这种背景下研究衣原体有两个原因:(1)它与陆地植物的关系更密切 比其他微生物模型;(2)它提供了一个模式生物,以研究古代的途径,失去了在 真菌谱系由于快速进化,如纤毛,G1/S控制网络(细胞周期蛋白D,Rb,E2 F/DP)。 为了解决这个问题,我们已经开发了一个有效的管道隔离,识别和分析 细胞周期控制基因的条件突变。该程序将经典遗传学与机器人技术相结合, 用于快速有效分子鉴定的新一代测序和新型生物信息学方法 数百个必需基因(迄今已确定约150个,还有更多的基因正在研究中)。 突变体筛选是深入分析特定生物学途径的先决条件, 基于简单的表型分析的填充的“部件”列表和初始功能分类。随着项目 进展,除了旨在全面的细胞周期收集,我们正在关注特定的基因 和途径,优先考虑那些植物王国特有的。我们将研究细胞周期蛋白-Cdk-APC 控制系统,其中我们的结果在衣原体和以前的结果在陆地植物表明, 保守性,但也与酵母/动物模型显著不同。此外,我们还将与 描述衣原体胞质分裂的机制。酵母菌/动物外的胞质分裂进行 没有肌动球蛋白收缩环。我们有证据表明已经获得的突变体 肌动蛋白和肌动蛋白相互作用成分的作用。为了实现这两个目标,我们将用荧光标记关键蛋白质。 表位,以允许在延时显微镜下在野生型和适当突变体中进行亚细胞定位 背景,并通过细胞周期分析蛋白质丰度和功能的调节。集群 突变体已经揭示了将被进一步研究的重要途径,包括控制 细胞周期定型、有丝分裂进程和胞质分裂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FREDERICK R. CROSS其他文献

FREDERICK R. CROSS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FREDERICK R. CROSS', 18)}}的其他基金

GLOBAL ANALYSIS OF CDC14 PHOSPHATASE REVEALS DIVERSE ROLES IN MITOTIC PROCESSES
CDC14 磷酸酶的整体分析揭示了有丝分裂过程中的多种作用
  • 批准号:
    8361505
  • 财政年份:
    2011
  • 资助金额:
    $ 33.9万
  • 项目类别:
STUDIES OF YEAST CDC14
酵母的研究 CDC14
  • 批准号:
    8169122
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
STUDIES OF YEAST CDC14
酵母的研究 CDC14
  • 批准号:
    7954078
  • 财政年份:
    2009
  • 资助金额:
    $ 33.9万
  • 项目类别:
STUDIES OF YEAST CDC14
酵母的研究 CDC14
  • 批准号:
    7722218
  • 财政年份:
    2008
  • 资助金额:
    $ 33.9万
  • 项目类别:
Building a quiet cell cycle clock
构建安静的细胞周期时钟
  • 批准号:
    8403012
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:
Sources and Consequences of noise in cell cycle regulation
细胞周期调节中噪音的来源和后果
  • 批准号:
    7660470
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:
Sources and Consequences of noise in cell cycle regulation
细胞周期调节中噪音的来源和后果
  • 批准号:
    7479185
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:
Building a quiet cell cycle clock
构建安静的细胞周期时钟
  • 批准号:
    8237988
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:
STUDIES OF YEAST CDC14
酵母的研究 CDC14
  • 批准号:
    7355105
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:
Evolution of cell cycle control: triangulating the last eukaryotic common ancestor
细胞周期控制的进化:最后一个真核共同祖先的三角测量
  • 批准号:
    9893303
  • 财政年份:
    2006
  • 资助金额:
    $ 33.9万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.9万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了