Model Development for Prediction of Surgical Outcome in Temporal Lobe Epilepsy Patients: Incorporation of the Correlation between Post-Surgical Reorganization Phenotypes and Pre-Surgical Data
预测颞叶癫痫患者手术结果的模型开发:纳入术后重组表型与术前数据之间的相关性
基本信息
- 批准号:9803083
- 负责人:
- 金额:$ 49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAlgorithmsAreaBeliefBrainBrain regionClinicalCommunicationCommunitiesDataDecision MakingEpilepsyEpileptogenesisExcisionFailureFreedomGeneralized EpilepsyHealth PersonnelIndividualInterventionKnowledgeLeadLesionLinkLiteratureMachine LearningMeasuresMethodologyMethodsModelingNeuronal PlasticityNeuronsOperative Surgical ProceduresOrganizational ChangeOutcomeOutputPatient CarePatient-Focused OutcomesPatientsPatternPhenotypePostoperative PeriodProcessRecurrenceRelapseRestSeizuresStructureSystemTechniquesTemporal LobeTemporal Lobe EpilepsyThalamic structureWorkbasebrain surgeryinnovationmachine learning algorithmmodel developmentneuroimagingnoveloutcome predictionpredictive modelingrandom forestrecruitrelating to nervous systemresponsestandard measurestemsurgery outcome
项目摘要
Project Summary
For epileptic patients who undergo brain resection or ablation interventions, it is the postoperative brain that will
dictate seizure status, whether controlled or relapsed. Yet, it is data from the preoperative brain that drives the
postoperative prediction process – a critical process for both patient and doctor, and one that is only clinically
meaningful when seizure outcomes are predicted presurgically to optimize surgical-decision making.
Accordingly, we propose to develop a multi-step model that will establish more accurate predictors of post-
surgical seizure outcome in temporal lobe epilepsy (TLE) emphasizing post-surgical status, for it is the areas of
the brain spared during surgery that form the neural substrates generating postoperative seizures. A second
perspective motivating our project is the need to identify those changes in functional and structural brain network
organization that support adaptive versus maladaptive seizure outcomes following brain surgery. These are the
network changes (e.g., the new seizure generators) that dispose and place a potential surgical candidate on a
specific outcome trajectory. Therefore, identifying the phenotypes of brain reorganization and change, and
incorporating their status into presurgical predictive models of outcome will likely prove crucial to enhancing our
ability to predict postoperative neuroplastic responses. While existing outcome prediction models in TLE have
focused on clinical variables (e.g., lesional status), we choose instead to focus on structural and functional
measures of network reorganization (communication dynamics, regional interactions, structural control). This
stems from our belief that capturing network changes throughout the whole postsurgical brain offers a better
practical method for identifying and predicting the latent seizure foci (epileptogenesis) that will emerge after
surgery. Through machine learning techniques we will deliver an algorithm to be used with new, potential surgical
patients, an algorithm that utilizes solely presurgical data, but incorporates our innovative prediction about
postsurgical brain organization. Accordingly, our approach provides both a methodologic and conceptual
(reorganization phenotypes) advance. The scientific premise leading to our hypotheses is that the failure in the
literature to account for the impact of unresected/ablated brain regions, and the brain reorganizations these
areas compel, has seriously impeded the predictive power of previous outcome models.
项目摘要
对于接受脑切除或消融干预的癫痫患者,
决定癫痫发作状态,无论是控制还是复发。然而,正是来自术前大脑的数据驱动了
术后预测过程-对于患者和医生来说都是一个关键的过程,
当癫痫发作结果被预测为最佳的药物决策时,这是有意义的。
因此,我们建议开发一个多步骤模型,建立更准确的预测后,
颞叶癫痫(TLE)的手术癫痫结局强调手术后状态,因为它是
在手术过程中保留下来的大脑形成了术后癫痫发作的神经基质。第二
激发我们项目的一个观点是,需要识别功能和结构脑网络中的这些变化
该组织支持脑外科手术后适应性与适应不良性癫痫发作的结果。这些都是
网络改变(例如,新的癫痫发作发生器),将潜在的外科手术候选人置于
具体的结果轨迹。因此,识别大脑重组和变化的表型,
将它们的状态纳入手术前结果预测模型可能对提高我们的
预测术后神经成形反应的能力。虽然现有的TLE结局预测模型
关注临床变量(例如,病变状态),我们选择专注于结构和功能
网络重组的措施(通信动态,区域互动,结构控制)。这
源于我们的信念,即捕捉整个手术后大脑的网络变化,
识别和预测潜在癫痫灶(癫痫发生)的实用方法,
手术通过机器学习技术,我们将提供一种算法,用于新的、潜在的外科手术。
患者,一种仅利用术前数据的算法,但结合了我们关于
术后脑组织因此,我们的方法提供了一个方法和概念
(重组表型)进展。导致我们假设的科学前提是,
文献来解释未切除/消融的脑区域的影响,并且大脑重组这些区域。
领域的强制性,严重阻碍了以前的结果模型的预测能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph I. Tracy其他文献
Depression and category learning.
抑郁症和类别学习。
- DOI:
10.1037/0096-3445.122.3.331 - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
J. David Smith;Joseph I. Tracy;Morgan J. Murray - 通讯作者:
Morgan J. Murray
A comparison of 'Early' and 'Late' stage brain activation during brief practice of a simple motor task.
在简单运动任务的简短练习过程中“早期”和“晚期”阶段大脑激活的比较。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Joseph I. Tracy;Scott S. Faro;Feroze Mohammed;Alex Pinus;Heather Christensen;Danielle Burkland - 通讯作者:
Danielle Burkland
The effect of autonomic arousal on attentional focus
自主神经唤醒对注意力集中的影响
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:1.7
- 作者:
Joseph I. Tracy;Feroze B. Mohamed;S. H. Faro;R. Tiver;A. Pinus;C. Bloomer;A. Pyrros;J. Harvan - 通讯作者:
J. Harvan
747 - The relationship of extrapyramidal symptoms and schizophrenia psychopathology
- DOI:
10.1016/s0920-9964(97)82755-7 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:
- 作者:
George Abraham;Joseph I. Tracy;Joseph K. Stanilla;Cherian Verghese;George M. Simpson;Richard C. Josiassen - 通讯作者:
Richard C. Josiassen
Assessing the relationship between craving and relapse.
评估渴望与复发之间的关系。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:3.8
- 作者:
Joseph I. Tracy - 通讯作者:
Joseph I. Tracy
Joseph I. Tracy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph I. Tracy', 18)}}的其他基金
Model Development for Prediction of Surgical Outcome in Temporal Lobe Epilepsy Patients: Incorporation of the Correlation between Post-Surgical Reorganization Phenotypes and Pre-Surgical Data
预测颞叶癫痫患者手术结果的模型开发:纳入术后重组表型与术前数据之间的相关性
- 批准号:
10599186 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Model Development for Prediction of Surgical Outcome in Temporal Lobe Epilepsy Patients: Incorporation of the Correlation between Post-Surgical Reorganization Phenotypes and Pre-Surgical Data
预测颞叶癫痫患者手术结果的模型开发:纳入术后重组表型与术前数据之间的相关性
- 批准号:
10376859 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Identify abnormal neurocognitive circuits in temporal lobe epilepsy
识别颞叶癫痫的异常神经认知回路
- 批准号:
7315309 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
Identify abnormal neurocognitive circuits in temporal lobe epilepsy
识别颞叶癫痫的异常神经认知回路
- 批准号:
7491452 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
SELECTIVE ATTENTION ASYMMETRIES IN SCHIZOPHRENIA
精神分裂症的选择性注意力不对称
- 批准号:
6032996 - 财政年份:1996
- 资助金额:
$ 49万 - 项目类别:
SELECTIVE ATTENTION ASYMMETRIES IN SCHIZOPHRENIA
精神分裂症的选择性注意力不对称
- 批准号:
2252547 - 财政年份:1996
- 资助金额:
$ 49万 - 项目类别:
SELECTIVE ATTENTION ASYMMETRIES IN SCHIZOPHRENIA
精神分裂症的选择性注意力不对称
- 批准号:
2392960 - 财政年份:1996
- 资助金额:
$ 49万 - 项目类别:
CHOLINERGIC EFFECTS ON COGNITION IN SCHIZOPHRENIA
胆碱能对精神分裂症认知的影响
- 批准号:
2253498 - 财政年份:1994
- 资助金额:
$ 49万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 49万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 49万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 49万 - 项目类别:
Standard Grant