Roles for altered Wnt signaling and oxidative stress response pathways as primary drivers of reduced reparative capacity in aging canine lung mesenchymal stromal cells
Wnt信号传导和氧化应激反应途径改变作为衰老犬肺间充质基质细胞修复能力降低的主要驱动因素的作用
基本信息
- 批准号:9812355
- 负责人:
- 金额:$ 39.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAgingAnimal ModelAntioxidantsCanis familiarisCell AgingCell LineCell ProliferationCell physiologyCell surfaceChronicCompanionsDNA DamageDNA MethylationDataDevelopmentDiseaseEpigenetic ProcessExposure toExpression ProfilingFundingGenesGoalsHumanLungLung CapacityLung diseasesMessenger RNAMetabolicMicroRNAsMissionModelingMusOxidative RegulationOxidative StressPathogenesisPathologyPathway interactionsPatientsPost-Transcriptional RegulationPredispositionProductionProgressive DiseasePublic HealthPulmonary PathologyRegulationResearchRoleScienceSignal PathwayStudy modelsSystemTestingTissuesUnited States National Institutes of HealthWNT Signaling PathwayWorkage relatedagedbasebeta cateninbiological adaptation to stressdesigneffective therapyepigenetic regulationfunctional declinehuman diseaselung repairmesenchymal stromal cellmethylation patternnoveloverexpressionpromoterpulmonary function declineresponsesuperoxide dismutase 1theoriestissue repairundergraduate student
项目摘要
Project Summary
An emerging paradigm postulates that cellular aging is driven by epigenetic alterations of
developmental signaling pathways. Alternative theories suggest that dysregulation of the
oxidative stress response, DNA damage accumulation, global epigenetic drift, or metabolic
byproduct accumulation are more important. Our inability to identify the primary drivers of
cellular aging highlights a critical gap in our ability to design effective ways to treat and reverse
age-related disease pathologies. Aging in humans is associated with reduced tissue repair,
declining pulmonary function, and an enhanced susceptibility to chronic pulmonary diseases
that are progressive, destructive and irreversible. Our overall objective in this proposed work is
to identify the primary drivers of age-related functional decline in highly proliferative multipotent
lung mesenchymal stromal cells (LMSCs). Like other tissue resident MSCs, LMSCs are tightly
regulated, critical in development and adult tissue repair, and sensitive to age-related
dysregulation. We have previously demonstrated that aging mice have reduced lung repair
capacity and reduced LMSC function. Our proposed work will identify drivers of LMSC aging in
companion dogs, a novel naturally-aging model in which we can identify broadly conserved
mechanisms relevant to human aging. Our central hypothesis is that epigenetically-regulated
changes in Wnt signaling and oxidative stress response pathways are interdependent primary
drivers of reduced reparative function in aging LMSCs. This central hypothesis is based on our
preliminary data showing that aLMSCs (isolated from aged dogs) have lower clonogenicity and
proliferation, altered expression profiles of Wnt signaling components and oxidative response
genes, and altered adaptive response to oxidative stress compared to yLMSCs (isolated from
young dogs). We will test our central hypothesis by pursuing the following two specific aims.
Aim 1. Identify how regulation of Wnt signaling drives the age-related decrease in reparative
capacity of LMSCs. From our preliminary data, our working hypothesis is that epigenetic
changes in Wnt signaling drive reduced reparative capacity in aLMSCs versus yLMSCs. Aim 2.
Identify regulatory drivers of the cellular response to oxidative stress in aged LMSCs. From our
preliminary data, our working hypothesis is that epigenetic changes in key adaptive oxidative
stress response genes leads to a dysregulated oxidative response and reduced reparative
capacity in aLMSCs versus yLMSCs. Our rationale is that we will identify conserved drivers of
age-related functional decline in MSCs that will be critical for understanding the pathogenesis of
age-related diseases in human patients.
项目摘要
一个新兴的范式假设细胞衰老是由表观遗传改变驱动的,
发育信号通路。替代理论认为,
氧化应激反应、DNA损伤累积、整体表观遗传漂移或代谢
副产物积累更为重要。我们无法确定
细胞老化凸显了我们设计有效治疗和逆转癌症的方法的能力的关键差距。
与年龄相关的疾病病理学。人类的衰老与组织修复减少有关,
肺功能下降,对慢性肺部疾病的易感性增加
是渐进的、破坏性的和不可逆转的。我们这项拟议工作的总体目标是
确定高度增殖性多能干细胞中年龄相关性功能下降的主要驱动因素,
肺间充质基质细胞(LMSCs)。与其他组织驻留MSC一样,LMSC紧密地
调节,在发育和成人组织修复中至关重要,并且对年龄相关的
失调我们之前已经证明,衰老的小鼠减少了肺修复,
容量和减少的LMSC功能。我们建议的工作将确定LMSC老化的驱动因素,
伴侣狗,一种新的自然衰老模型,我们可以识别广泛保守的
与人类衰老有关的机制。我们的中心假设是,
Wnt信号传导和氧化应激反应途径的变化是相互依赖的主要
老化LMSC修复功能降低的驱动因素。这个核心假设是基于我们的
初步数据显示aLMSC(分离自老年狗)具有较低的克隆形成性,
增殖、Wnt信号传导组分的表达谱改变和氧化反应
基因,并与yLMSC(分离自
幼犬)。我们将通过追求以下两个具体目标来检验我们的中心假设。
目标1.确定Wnt信号传导的调节如何驱动与年龄相关的修复性降低
LMSC的能力。从我们的初步数据来看,我们的工作假设是
Wnt信号传导的变化驱动aLMSC相对于yLMSC的修复能力降低。目标2.
确定老化LMSC中细胞对氧化应激反应的调控驱动因素。从我们
初步数据,我们的工作假设是,表观遗传变化的关键适应性氧化
应激反应基因导致氧化反应失调,
aLMSC与yLMSC的容量。我们的理由是,我们将确定保守的驱动程序,
年龄相关的MSC功能下降,这将是至关重要的了解发病机制,
与年龄有关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Adams Paxson其他文献
Julia Adams Paxson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Impacts of hurricanes and social buffering on biological aging in a free-ranging animal model
飓风和社会缓冲对自由放养动物模型生物衰老的影响
- 批准号:
10781021 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
REU Site: Comparative Animal Model Approaches to Regeneration and Aging
REU 网站:再生和衰老的比较动物模型方法
- 批准号:
2243416 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
Early life trauma and aging using a long-lived animal model
使用长寿动物模型研究早期生命创伤和衰老
- 批准号:
10369990 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Early life trauma and aging using a long-lived animal model
使用长寿动物模型研究早期生命创伤和衰老
- 批准号:
10550195 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Programming amylin secretion to slow brain aging - an animal model
编程胰淀素分泌以减缓大脑衰老——动物模型
- 批准号:
9412623 - 财政年份:2017
- 资助金额:
$ 39.13万 - 项目类别:
Developing the Zebrafish as an animal model for aging
开发斑马鱼作为衰老动物模型
- 批准号:
6684675 - 财政年份:2003
- 资助金额:
$ 39.13万 - 项目类别:
Neurogenesis in an Animal Model of Cognitive Aging
认知衰老动物模型中的神经发生
- 批准号:
6532568 - 财政年份:2002
- 资助金额:
$ 39.13万 - 项目类别:
Neurogenesis in an Animal Model of Cognitive Aging
认知衰老动物模型中的神经发生
- 批准号:
6339639 - 财政年份:2001
- 资助金额:
$ 39.13万 - 项目类别:
Animal model for studying inner ear mechanism of aging
研究内耳衰老机制的动物模型
- 批准号:
12671674 - 财政年份:2000
- 资助金额:
$ 39.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




