In utero mouse embryo phenotyping with high-frequency ultrasound

高频超声对小鼠子宫内胚胎表型分析

基本信息

  • 批准号:
    9357583
  • 负责人:
  • 金额:
    $ 70.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The goal of this proposal is to phenotype early- to mid-gestational mouse embryos by segmenting select organ systems in 3D data sets acquired in utero with high-frequency ultrasound (HFU). The International Mouse Phe- notyping Consortium (IMPC), which includes the NIH Knockout (KO) Mouse Phenotyping Program (KOMP2), will generate 20,000 mouse strains in the next decade, including many important models of human structural birth defects and congenital diseases. The development of phenotyping methods that provide for efficient pipeline analyses of defects in embryonic growth in the KO mouse strains is a high priority for this effort. An in utero 3D imaging approach, enabling volumetric and longitudinal analyses of a variety of organ systems over a range of early- to mid-gestational stage mouse embryos, would provide added benefit and critical additional in vivo data not currently available. Commercial HFU systems are widely available in many research centers largely thanks to the NIH-funded Small Animal Imaging Research Programs and Shared Instrumentation Programs. HFU is therefore an excellent candidate modality to provide in utero 3D image data that can be quantitatively analyzed and archived to support the KOMP2/IMPC embryonic lethal phenotyping pipeline and future phenotyping efforts. We propose to develop and validate in utero 3D HFU image-acquisition protocols and image-processing meth- ods that permit noninvasive, longitudinal studies of embryonic development and, in particular, the detection and characterization of KO phenotypes. Volumetric HFU data will be collected in utero from mouse embryos staged between E9.5 to 15.5 in order to establish a database of normal development. Algorithms will be developed to segment 3D regions and extract parameters that quantify embryonic stage and identify regional changes between normal and KO embryos. We will acquire data with a custom, annular-array system and with a VisualSonics Vevo 2100. The fine-resolution annular-array data will be used to initially develop the image-processing algorithms and then the algorithms will be adapted for Vevo 2100 data. We will compare the quantitative parameters derived from the segmentation results obtained from the two scanners to ensure that the Vevo 2100 is able to provide equivalent mutant detection and quantification. Initial testing will be undertaken using wild-type and En1 and Gli2 mutants that have known defects. Finally, the acquisition and processing protocols will be applied to 3D Vevo 2100 data from 5-10 KOMP2 KO mouse lines with embryonic defects in a variety of organ systems to validate the HFU methods for detecting and characterizing phenotypes in these mutant embryos.
项目总结/摘要 这项计划的目标是通过分割选择的器官来对早期至中期妊娠的小鼠胚胎进行表型分析 在子宫内使用高频超声(HFU)采集的3D数据集中使用系统。国际小鼠Phe- 包括NIH敲除(KO)小鼠表型分型计划(KOMP 2)在内的非分型联盟(IMPC)将 在未来十年内产生20,000种小鼠品系,包括许多重要的人类结构出生模型 缺陷和先天性疾病。开发表型分析方法,提供有效的管道 对KO小鼠品系中胚胎生长缺陷的分析是这一努力的高度优先事项。子宫内3D 成像方法,能够在一定范围内对各种器官系统进行体积和纵向分析。 早期至中期妊娠期小鼠胚胎,将提供额外的贝内和关键的额外体内数据 目前不可用。商业HFU系统在许多研究中心广泛使用,这主要归功于 美国国立卫生研究院资助的小动物成像研究计划和共享仪器计划。HFU是 因此,这是一种提供可定量分析的子宫内3D图像数据的优秀候选模式 并存档以支持KOMP 2/IMPC胚胎致死表型分析管道和未来的表型分析工作。 我们建议开发和验证子宫内3D HFU图像采集协议和图像处理方法, ODS允许对胚胎发育进行非侵入性的纵向研究,特别是检测和 KO表型的表征。将在子宫内从分期的小鼠胚胎中收集体积HFU数据 在E9.5至15.5之间,以建立正常发育的数据库。算法将被开发, 分割3D区域并提取量化胚胎阶段的参数, 正常和KO胚胎。我们将使用定制的环形阵列系统和VisualSonics Vevo 2100.高分辨率环形阵列数据将用于初步开发图像处理算法, 则算法将适用于Vevo 2100数据。我们将比较得出的定量参数 从两台扫描仪获得的分割结果,以确保Vevo 2100能够提供 等同的突变体检测和定量。将使用野生型和En 1和Gli 2进行初始测试 有已知缺陷的突变体最后,将采集和处理协议应用于3D Vevo 来自5-10个在各种器官系统中具有胚胎缺陷的KOMP 2 KO小鼠品系的2100个数据,以验证 用于检测和表征这些突变胚胎中的表型的HFU方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Ketterling其他文献

Jeffrey Ketterling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Ketterling', 18)}}的其他基金

Vitreo-retinal disease imaging with 3D annular-array ultrasound
使用 3D 环形阵列超声进行玻璃体视网膜疾病成像
  • 批准号:
    10664131
  • 财政年份:
    2022
  • 资助金额:
    $ 70.85万
  • 项目类别:
Vitreo-retinal disease imaging with 3D annular-array ultrasound
使用 3D 环形阵列超声进行玻璃体视网膜疾病成像
  • 批准号:
    10289702
  • 财政年份:
    2021
  • 资助金额:
    $ 70.85万
  • 项目类别:
Fine-resolution mapping of micro vasculature after placental transport of acoustic nanodrops
声学纳米滴胎盘运输后微脉管系统的精细分辨率绘图
  • 批准号:
    9983114
  • 财政年份:
    2019
  • 资助金额:
    $ 70.85万
  • 项目类别:
In utero mouse embryo phenotyping with high-frequency ultrasound
高频超声对小鼠子宫内胚胎表型分析
  • 批准号:
    9168204
  • 财政年份:
    2016
  • 资助金额:
    $ 70.85万
  • 项目类别:
Quantitative characterization of vitreous degeneration in myopia
近视玻璃体变性的定量表征
  • 批准号:
    8823987
  • 财政年份:
    2015
  • 资助金额:
    $ 70.85万
  • 项目类别:
Advanced acoustic field measurements of shock wave lithotripters
冲击波碎石机的先进声场测量
  • 批准号:
    7760534
  • 财政年份:
    2009
  • 资助金额:
    $ 70.85万
  • 项目类别:
Advanced acoustic field measurements of shock wave lithotripters
冲击波碎石机的先进声场测量
  • 批准号:
    7588478
  • 财政年份:
    2009
  • 资助金额:
    $ 70.85万
  • 项目类别:
High-frequency-ultrasound annular arrays for ophthalmic and small-animal imaging
用于眼科和小动物成像的高频超声环形阵列
  • 批准号:
    7640867
  • 财政年份:
    2008
  • 资助金额:
    $ 70.85万
  • 项目类别:
Acoustic Contrast Agents for Use with High-frequency Ultrasound
用于高频超声的声学造影剂
  • 批准号:
    7917415
  • 财政年份:
    2008
  • 资助金额:
    $ 70.85万
  • 项目类别:
Acoustic Contrast Agents for Use with High-frequency Ultrasound
用于高频超声的声学造影剂
  • 批准号:
    8135333
  • 财政年份:
    2008
  • 资助金额:
    $ 70.85万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 70.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了