Spectroscopy and Instrumentation Core
光谱学和仪器核心
基本信息
- 批准号:9351542
- 负责人:
- 金额:$ 22.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-10 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBiophysicsColorCommunitiesDetectionDevelopmentElectron Nuclear Double ResonanceElectron Spin Resonance SpectroscopyElectronsElectrophysiology (science)EnvironmentFluorescenceFluorescent ProbesFreezingFrequenciesGoalsImaging TechniquesIndividualLabelMagnetismMeasurementMeasuresMembrane ProteinsMethodsMicrofluidicsMolecular ConformationMotionMotivationNatureNoisePerformancePhotonsPhysiologic pulsePhysiologicalProceduresProcessProteinsReportingResolutionSamplingSeriesServicesSignal TransductionSpecificitySpectrum AnalysisSpin LabelsStructural ProteinSystemTechniquesTechnologyTemperatureTestingTimeTransducersbasedesignexperimental studyfluorophoreimprovedinstrumentinstrumentationluminescence resonance energy transfermembernanosecondsingle moleculesingle-molecule FRETtoolunnatural amino acidsvoltage
项目摘要
The objective of the Instrumentation Spectroscopy Core (SIC) D2 is two-fold: first, detailed in D2.2
Planned Direction of Development, is to improve presently available instruments, develop new instruments, or
methods and procedures aimed at improving on signal to noise ratio, specificity and time resolution of
spectroscopic techniques and combining them with functional techniques, such as electrophysiology. The
second objective, detailed in D2.4 Component to the MPSDC, is to provide service to the MPSD members, and
the community at large, with the new developments as well as with the spectroscopic and functional
techniques presently installed.
Two major areas of development will be pursued. Electron paramagnetic resonance (EPR) and
fluorescence provide complementary information on the dynamics of structural changes in membrane proteins.
Time-resolved EPR techniques, such as rapid freeze quench (RFQ) will be a priority, together with the
development of a microfluidic-based RFQ apparatus. Likewise, we plan to take advantage of the large range of
time scales probed by fluorescence. We will do so by optimizing the probes and perfecting the detection
techniques (both ensemble and single-molecule) that enable the tracking of dynamic processes in membrane
proteins. While the finite photon flux and photostability of single-fluorophores typically limits single-molecule
imaging techniques to the ms regime, we will push this boundary to the µs regime through the development of
intramolecularly stabilized organic fluorophores.
These general goals will be carried out through a series of specific projects:
AIM 1: To further develop and perfect a microfluidic rapid freeze quench (RFQ) EPR system to enable
measurements of frozen samples that are generated by rapid mixing of reactants and make RFQ accessible
to members of the consortium. This technique will be applied in conjunction with double electron-electron
resonance (DEER) and Electron nuclear double resonance (ENDOR) experiments.
AIM 2: To further develop and enhance single-molecule fluorescence techniques:
a) Test, expand and make available high-performance organic fluorophores. Test those that are developed
with unnatural amino acid technologies in core D1.
b) Establish a setup that combines magnetic tweezers with single-molecule fluorescence. This technique will
be used to apply force to membrane proteins to study conformational changes on individual molecules
while assessing their functionalities with fluorescent probes.
c) Develop a multi-color single-molecule FRET setup that will allow detection of synchronized or correlated
motions among multiple domains.
d) Develop a setup to measure single-molecule fluorescence with enhanced time resolution to resolve fast
conformational changes
AIM 3: To further develop and enhance ensemble fluorescence techniques:
a) Improvement of an LRET setup and make it available to members of the consortium to measure distances in
functional membrane proteins.
b) Develop a setup to measure nanosecond fluorophore lifetimes in the microsecond time scale combined with
electrophysiology.
c) Improve the fluorescence detection system with a new design of the photodetector-to-voltage transducer
and develop a new more powerful acquisition system that will be used for all of the above setups.
仪器光谱核心(SIC) D2的目标是双重的:首先,在D2.2中详细说明
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANCISCO J BEZANILLA其他文献
FRANCISCO J BEZANILLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANCISCO J BEZANILLA', 18)}}的其他基金
Cell-targeted Gold Nanoparticles for Photo-excitation fo Retinal Ganglion Cells
用于视网膜神经节细胞光激发的细胞靶向金纳米颗粒
- 批准号:
9999837 - 财政年份:2017
- 资助金额:
$ 22.59万 - 项目类别:
ISS ChronosBH Fluorescence Lifetime Spectrometer
ISS ChronosBH 荧光寿命光谱仪
- 批准号:
7793245 - 财政年份:2010
- 资助金额:
$ 22.59万 - 项目类别:
Bridging Project 1: Conformational Transitions in P-class ATPases
桥接项目 1:P 类 AT 酶的构象转变
- 批准号:
7922841 - 财政年份:2010
- 资助金额:
$ 22.59万 - 项目类别:
Charge translocation by the sodium-potassium pump in the giant axon of the Humbol
洪堡巨轴突中钠钾泵的电荷易位
- 批准号:
7907838 - 财政年份:2009
- 资助金额:
$ 22.59万 - 项目类别:
Charge translocation by the sodium-potassium pump in the giant axon of the Humbol
洪堡巨轴突中钠钾泵的电荷易位
- 批准号:
8085913 - 财政年份:2009
- 资助金额:
$ 22.59万 - 项目类别:
Charge translocation by the sodium-potassium pump in the giant axon of the Humbol
洪堡巨轴突中钠钾泵的电荷易位
- 批准号:
7694907 - 财政年份:2009
- 资助金额:
$ 22.59万 - 项目类别:
The Electrophysiological Studies of Voltage Gated Channels
电压门控通道的电生理学研究
- 批准号:
7924967 - 财政年份:2009
- 资助金额:
$ 22.59万 - 项目类别:
Surface Plasmon-coupled Fluorescence Microscope to Study Ion Channel Dynamics
表面等离子体耦合荧光显微镜研究离子通道动力学
- 批准号:
7268077 - 财政年份:2006
- 资助金额:
$ 22.59万 - 项目类别:
Surface Plasmon-coupled Fluorescence Microscope to Study Ion Channel Dynamics
表面等离子体耦合荧光显微镜研究离子通道动力学
- 批准号:
7084336 - 财政年份:2006
- 资助金额:
$ 22.59万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 22.59万 - 项目类别:
Fellowship
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Discovery Projects
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Continuing Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 22.59万 - 项目类别:
Standard Grant