Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
基本信息
- 批准号:10358651
- 负责人:
- 金额:$ 68.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-21 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsAnatomyBiologicalBiopsyCancer Death RatesCancer PatientClassificationComputer softwareDataData SetDevicesDiagnosisDiagnosticDiscriminationDiseaseEarly DiagnosisEarly treatmentFOLH1 geneGoldGuidelinesHandHistopathologyHybridsImageIndividualInterobserver VariabilityKineticsLesionLife ExpectancyLigandsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasurementMeta-AnalysisMetabolicMethodologyMethodsModalityModelingMorphologyPSA levelPatient SelectionPatientsPelvisPerformancePhenotypePhysiologicalPositron-Emission TomographyProstateQuality of lifeRadical ProstatectomyReproducibilityRiskScanningSourceTestingTimeTranslationsWorkanticancer researchattenuationbasebone imagingcancer classificationcancer imagingclinical applicationclinically relevantclinically significantdata acquisitiondeep learningdiagnostic accuracyhuman subjectimaging modalityimprovedindustry partnermachine learning modelmenmultimodal datamultimodalitynew technologynon-invasive imagingradiologistradiomicsradiotracertooltransmission processtumor
项目摘要
Project Summary
Prostate cancer (PCa) is the most diagnosed form of non-cutaneous cancer in US men. The selection of
patients who require immediate treatment from those suitable for active surveillance currently relies on non-
specific and inaccurate measurements. A method that allows clinicians to more confidently discriminate
clinically relevant from non-life-threatening tumors is needed to improve patient management. Multiparametric
magnetic resonance imaging (mpMRI) is the preferred non-invasive imaging modality for characterizing
primary PCa. However, its accuracy for detecting clinically significant PCa is variable. We propose to address
this limitation by combining mpMRI with positron emission tomography (PET) with a PCa-specific radiotracer
and using advanced multimodal machine learning models (i.e. radiomics and deep learning) to characterize
tumor aggressiveness based on the imaging data. Recently, scanners capable of simultaneous PET and MR
data acquisition in human subjects have become commercially available. An integrated MR-PET scanner is the
ideal tool for comparing MR and PET derived image features to identify those that provide complementary
information and build a hybrid PET-mpMRI model that most accurately identifies clinically significant tumors.
While this novel technology allows the acquisition of perfectly coregistered complementary anatomical,
functional and metabolic data in a single imaging session, a new challenge needs to first be addressed to
obtain quantitatively accurate PET data. In an integrated MR-PET scanner, the information needed for PET
attenuation correction (AC) has to be derived from the MR data and the methods currently available for this
task are inadequate for advanced quantitative studies. We have formed an academic-industrial partnership to
accelerate the translation of multimodal MR-PET machine learning approaches into PCa research and clinical
applications by addressing the AC challenge and validating machine learning models for detecting clinically
significant disease against gold standard histopathology in patients undergoing radical prostatectomy.
Specifically, we will: (1) Develop and validate an MR-based approach for obtaining quantitatively accurate PET
data. We hypothesize that attenuation maps as accurate as those obtained using a 511 keV transmission
source – the true gold standard for PET AC – will be obtained; (2) Identify the multimodal radiomics model that
most accurately predicts PCa aggressiveness. We hypothesize that the diagnostic accuracy of this approach
will be superior to that offered by the stand-alone modalities; (3) Evaluate radiomics and deep learning
approaches for predicting pPCa aggressiveness. We hypothesize that machine learning approaches will
achieve a higher predictive accuracy when applied to data acquired simultaneously than sequentially.
项目摘要
前列腺癌(PCA)是美国男性中最诊断出的非乳腺癌形式。选择
需要立即接受适合主动监测患者的患者,目前依赖于非 -
特定和不准确的测量。一种允许临床医生更自信地歧视的方法
需要与非生命威胁性肿瘤有关的临床相关以改善患者管理。多参数
磁共振成像(MPMRI)是表征的首选非侵入性成像方式
主要PCA。但是,它准确检测具有临床意义的PCA是可变的。我们建议解决
通过将MPMRI与正电子发射断层扫描(PET)与PCA特异性放射性示踪剂相结合,这种限制
并使用高级多模式的机器学习模型(即放射线和深度学习)来表征
基于成像数据的肿瘤侵略性。最近,扫描仪能够同时使用宠物和MR
人类受试者中的数据获取已成为商业上。集成的MR-PET扫描仪是
比较MR和PET衍生的图像功能以识别提供完整的图像功能的理想工具
信息并建立一个最准确地识别临床意义的肿瘤的混合动力宠物MPMRI模型。
尽管这种新颖的技术允许获得完整的核心策略完整的解剖学,但
在单个成像会话中,功能和代谢数据,首先需要解决新的挑战
获得定量准确的宠物数据。在集成的MR-PET扫描仪中,PET所需的信息
衰减校正(AC)必须从MR数据和当前可用的方法得出
对于高级定量研究,任务不足。我们已经建立了学术工业合作伙伴关系
加速多模式MR-PET机器学习方法的翻译方式,以PCA研究和临床
通过应对交流挑战并验证机器学习模型来申请临床检测
在接受根治性前列腺切除术的患者中,针对黄金标准组织病理学的重要疾病。
具体而言,我们将:(1)开发和验证一种基于MR的方法来获得定量准确的PET
数据。我们假设该衰减图与使用511 KEV传输获得的衰减图一样准确
来源 - 将获得PET AC的真正黄金标准; (2)确定多模式放射线学模型
最准确地预测PCA侵略性。我们假设这种方法的诊断准确性
将优于独立方式所提供的; (3)评估放射线学和深度学习
预测PPCA侵略性的方法。我们假设机器学习方法将
仅仅将获取的数据应用于比顺序获得的数据时,实现更高的预测精度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Catana其他文献
Ciprian Catana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Catana', 18)}}的其他基金
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10007205 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10644028 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10267674 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of 7-T MR-compatible TOF-DOI PET Detector and System Technology for the Human Dynamic Neurochemical Connectome Scanner
开发用于人体动态神经化学连接组扫描仪的 7-T MR 兼容 TOF-DOI PET 探测器和系统技术
- 批准号:
9789281 - 财政年份:2018
- 资助金额:
$ 68.22万 - 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
- 批准号:
10557135 - 财政年份:2018
- 资助金额:
$ 68.22万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8439120 - 财政年份:2013
- 资助金额:
$ 68.22万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8601071 - 财政年份:2013
- 资助金额:
$ 68.22万 - 项目类别:
Postgraduate Training Program in Medical Imaging (PTPMI)
医学影像研究生培训计划 (PTPMI)
- 批准号:
10650760 - 财政年份:2011
- 资助金额:
$ 68.22万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别: