Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
基本信息
- 批准号:10358651
- 负责人:
- 金额:$ 68.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-21 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsAnatomyBiologicalBiopsyCancer Death RatesCancer PatientClassificationComputer softwareDataData SetDevicesDiagnosisDiagnosticDiscriminationDiseaseEarly DiagnosisEarly treatmentFOLH1 geneGoldGuidelinesHandHistopathologyHybridsImageIndividualInterobserver VariabilityKineticsLesionLife ExpectancyLigandsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasurementMeta-AnalysisMetabolicMethodologyMethodsModalityModelingMorphologyPSA levelPatient SelectionPatientsPelvisPerformancePhenotypePhysiologicalPositron-Emission TomographyProstateQuality of lifeRadical ProstatectomyReproducibilityRiskScanningSourceTestingTimeTranslationsWorkanticancer researchattenuationbasebone imagingcancer classificationcancer imagingclinical applicationclinically relevantclinically significantdata acquisitiondeep learningdiagnostic accuracyhuman subjectimaging modalityimprovedindustry partnermachine learning modelmenmultimodal datamultimodalitynew technologynon-invasive imagingradiologistradiomicsradiotracertooltransmission processtumor
项目摘要
Project Summary
Prostate cancer (PCa) is the most diagnosed form of non-cutaneous cancer in US men. The selection of
patients who require immediate treatment from those suitable for active surveillance currently relies on non-
specific and inaccurate measurements. A method that allows clinicians to more confidently discriminate
clinically relevant from non-life-threatening tumors is needed to improve patient management. Multiparametric
magnetic resonance imaging (mpMRI) is the preferred non-invasive imaging modality for characterizing
primary PCa. However, its accuracy for detecting clinically significant PCa is variable. We propose to address
this limitation by combining mpMRI with positron emission tomography (PET) with a PCa-specific radiotracer
and using advanced multimodal machine learning models (i.e. radiomics and deep learning) to characterize
tumor aggressiveness based on the imaging data. Recently, scanners capable of simultaneous PET and MR
data acquisition in human subjects have become commercially available. An integrated MR-PET scanner is the
ideal tool for comparing MR and PET derived image features to identify those that provide complementary
information and build a hybrid PET-mpMRI model that most accurately identifies clinically significant tumors.
While this novel technology allows the acquisition of perfectly coregistered complementary anatomical,
functional and metabolic data in a single imaging session, a new challenge needs to first be addressed to
obtain quantitatively accurate PET data. In an integrated MR-PET scanner, the information needed for PET
attenuation correction (AC) has to be derived from the MR data and the methods currently available for this
task are inadequate for advanced quantitative studies. We have formed an academic-industrial partnership to
accelerate the translation of multimodal MR-PET machine learning approaches into PCa research and clinical
applications by addressing the AC challenge and validating machine learning models for detecting clinically
significant disease against gold standard histopathology in patients undergoing radical prostatectomy.
Specifically, we will: (1) Develop and validate an MR-based approach for obtaining quantitatively accurate PET
data. We hypothesize that attenuation maps as accurate as those obtained using a 511 keV transmission
source – the true gold standard for PET AC – will be obtained; (2) Identify the multimodal radiomics model that
most accurately predicts PCa aggressiveness. We hypothesize that the diagnostic accuracy of this approach
will be superior to that offered by the stand-alone modalities; (3) Evaluate radiomics and deep learning
approaches for predicting pPCa aggressiveness. We hypothesize that machine learning approaches will
achieve a higher predictive accuracy when applied to data acquired simultaneously than sequentially.
项目摘要
前列腺癌(PCa)是美国男性中最常见的非皮肤癌。的选择
需要立即从适合积极监测的患者那里得到治疗的患者目前依赖非
具体和不准确的测量。一种让临床医生更有信心地区分
临床相关的非危及生命的肿瘤,需要改善患者的管理。多参数
磁共振成像(mpMRI)是用于表征
原发性前列腺癌然而,其检测临床显著PCa的准确性是可变的。我们建议解决
通过将mpMRI与正电子发射断层扫描(PET)和PCA特异性放射性示踪剂相结合,
并使用先进的多模态机器学习模型(即放射组学和深度学习)来表征
基于成像数据的肿瘤侵袭性。最近,能够同时进行PET和MR的扫描仪
在人类受试者中的数据采集已经变得商业化。集成式MR-PET扫描仪是
用于比较MR和PET衍生图像特征的理想工具,以识别提供互补性的图像特征
该系统能够提供最新的临床信息并构建混合PET-mpMRI模型,以最准确地识别临床显著肿瘤。
虽然这种新技术允许获得完美配准的互补解剖结构,
功能和代谢数据在一个单一的成像会话,一个新的挑战需要首先解决,
获得定量准确的PET数据。在集成的MR-PET扫描仪中,PET所需的信息
衰减校正(AC)必须从MR数据和当前可用于此的方法中导出
任务不足以进行高级定量研究。我们建立了学术和工业合作伙伴关系,
加速将多模态MR-PET机器学习方法转化为PCa研究和临床
通过解决AC挑战和验证用于临床检测的机器学习模型,
与接受根治性乳腺癌切除术患者的金标准组织病理学相比,
具体而言,我们将:(1)开发和验证基于MR的方法,以获得定量准确的PET
数据我们假设衰减图与使用511 keV传输获得的衰减图一样准确
来源-PET AC的真正黄金标准-将获得;(2)确定多模式放射组学模型,
最准确地预测PCa的攻击性。我们假设这种方法的诊断准确性
将优于独立模式所提供的上级;(3)评估放射组学和深度学习
预测pPCa攻击性的方法。我们假设机器学习方法将
当应用于同时采集的数据时,比应用于顺序采集的数据时,实现更高的预测精度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Catana其他文献
Ciprian Catana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Catana', 18)}}的其他基金
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10007205 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10644028 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10267674 - 财政年份:2020
- 资助金额:
$ 68.22万 - 项目类别:
Development of 7-T MR-compatible TOF-DOI PET Detector and System Technology for the Human Dynamic Neurochemical Connectome Scanner
开发用于人体动态神经化学连接组扫描仪的 7-T MR 兼容 TOF-DOI PET 探测器和系统技术
- 批准号:
9789281 - 财政年份:2018
- 资助金额:
$ 68.22万 - 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
- 批准号:
10557135 - 财政年份:2018
- 资助金额:
$ 68.22万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8439120 - 财政年份:2013
- 资助金额:
$ 68.22万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8601071 - 财政年份:2013
- 资助金额:
$ 68.22万 - 项目类别:
Postgraduate Training Program in Medical Imaging (PTPMI)
医学影像研究生培训计划 (PTPMI)
- 批准号:
10650760 - 财政年份:2011
- 资助金额:
$ 68.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 68.22万 - 项目类别:
Research Grant














{{item.name}}会员




