Development of the Human Dynamic Neurochemical Connectome Scanner

人体动态神经化学连接组扫描仪的开发

基本信息

  • 批准号:
    10644028
  • 负责人:
  • 金额:
    $ 104.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-21 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary We seek support to develop and build the next generation 7-Tesla magnetic resonance (MR)-compatible positron emission tomography (PET) brain scanner with dramatically improved spatiotemporal resolution (HSTR-BrainPET). PET and MRI are two of the most powerful imaging modalities currently in use for studying the human brain. Recently, scanners capable of simultaneous PET and MR whole-body data acquisition in human subjects have become commercially available. However, there is no equivalent dedicated head device on the market to address the needs of the researchers and clinicians focusing on the brain and the performance of whole-body devices is rather limited for this purpose. More importantly, although current PET technology achieves high molecular sensitivity with a broad set of probes for neurochemical targets, PET still lacks the capability to track dynamic changes in a time scale comparable to functional processes. Our main goal is to build an MR-compatible PET camera with very high sensitivity to enable truly dynamic PET imaging of brain neurotransmission. One of the first MR-compatible brain PET prototypes was installed at the Martinos Center in 2008 when human PET/MR imaging was in its infancy. Following a close collaboration with Siemens to address the remaining technical challenges, proof-of-principle PET/MR studies demonstrating the advantages and potential of this novel imaging modality were performed. A decade later, a new type of photon detector technology has reached a level of maturity that would allow us to build the next generation integrated system with dramatically improved spatiotemporal resolution. We propose to address the hardware and software challenges in building 7-T MR-compatible PET technology purpose-built to extend the temporal window of PET down to just a few seconds. Additionally, the substantial improvement in spatial resolution will also allow for imaging of cortical substructures and nuclei that cannot be resolved with current state-of-the-art devices. Specifically, we propose to: (1) Build the hardware components of the HSTR-BrainPET insert, integrate it with the 7-T MR scanner and characterize the combined device; (2) Implement the software for PET data acquisition, processing and image reconstruction adapted to the non-conventional geometry we are proposing; (3) Apply the integrated scanner to dynamic assessment of neurochemical events and brain activation in healthy human subjects. !
项目概要 我们寻求支持来开发和构建下一代 7-Tesla 磁共振 (MR) 兼容设备 时空分辨率显着提高的正电子发射断层扫描 (PET) 脑部扫描仪 (HSTR-BrainPET)。 PET 和 MRI 是目前用于研究的两种最强大的成像方式 人类的大脑。最近,能够同时采集 PET 和 MR 全身数据的扫描仪 人类受试者已经商业化。然而,没有等效的专用头设备 市场上以满足研究人员和临床医生关注大脑和 为此目的,全身设备的性能相当有限。更重要的是,虽然目前的PET 技术通过针对神经化学靶标的广泛探针实现了高分子灵敏度,PET 仍然 缺乏在与功能流程相当的时间范围内跟踪动态变化的能力。我们的主要 目标是构建具有极高灵敏度的 MR 兼容 PET 相机,以实现真正的动态 PET 成像 大脑神经传递。第一个 MR 兼容的大脑 PET 原型安装在 Martinos 该中心于 2008 年成立,当时人类 PET/MR 成像还处于起步阶段。与西门子密切合作后 为了解决剩余的技术挑战,原理验证 PET/MR 研究证明了 展示了这种新型成像方式的优点和潜力。十年后,一种新型光子 探测器技术已达到成熟水平,使我们能够构建下一代集成探测器 系统的时空分辨率显着提高。我们建议解决硬件和 构建专门用于延长时间的 7-T MR 兼容 PET 技术的软件挑战 PET 窗口缩短至仅几秒钟。此外,空间分辨率的显着提高将 还可以对当前最先进技术无法解决的皮质亚结构和细胞核进行成像 设备。具体来说,我们建议:(1)构建 HSTR-BrainPET 插入物的硬件组件, 将其与 7-T MR 扫描仪集成并表征组合设备; (2) 实现PET软件 适应非常规几何形状的数据采集、处理和图像重建 提议; (3) 将集成扫描仪应用于神经化学事件和大脑​​的动态评估 健康人类受试者中的激活。 !

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Horizons in Brain PET Instrumentation.
脑 PET 仪器的新视野。
  • DOI:
    10.1016/j.cpet.2023.08.001
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Allen,MagdelenaS;Scipioni,Michele;Catana,Ciprian
  • 通讯作者:
    Catana,Ciprian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciprian Catana其他文献

Ciprian Catana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciprian Catana', 18)}}的其他基金

High Performance PET/CT Scanner
高性能 PET/CT 扫描仪
  • 批准号:
    10630534
  • 财政年份:
    2023
  • 资助金额:
    $ 104.4万
  • 项目类别:
MRI-compatible BrainPET Scanner
兼容 MRI 的 BrainPET 扫描仪
  • 批准号:
    10505319
  • 财政年份:
    2022
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
  • 批准号:
    10007205
  • 财政年份:
    2020
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
  • 批准号:
    10267674
  • 财政年份:
    2020
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of 7-T MR-compatible TOF-DOI PET Detector and System Technology for the Human Dynamic Neurochemical Connectome Scanner
开发用于人体动态神经化学连接组扫描仪的 7-T MR 兼容 TOF-DOI PET 探测器和系统技术
  • 批准号:
    9789281
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
  • 批准号:
    10557135
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
  • 批准号:
    10358651
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
  • 批准号:
    8439120
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
  • 批准号:
    8601071
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
Postgraduate Training Program in Medical Imaging (PTPMI)
医学影像研究生培训计划 (PTPMI)
  • 批准号:
    10650760
  • 财政年份:
    2011
  • 资助金额:
    $ 104.4万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 104.4万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了