Development of the Human Dynamic Neurochemical Connectome Scanner

人体动态神经化学连接组扫描仪的开发

基本信息

  • 批准号:
    10644028
  • 负责人:
  • 金额:
    $ 104.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-21 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary We seek support to develop and build the next generation 7-Tesla magnetic resonance (MR)-compatible positron emission tomography (PET) brain scanner with dramatically improved spatiotemporal resolution (HSTR-BrainPET). PET and MRI are two of the most powerful imaging modalities currently in use for studying the human brain. Recently, scanners capable of simultaneous PET and MR whole-body data acquisition in human subjects have become commercially available. However, there is no equivalent dedicated head device on the market to address the needs of the researchers and clinicians focusing on the brain and the performance of whole-body devices is rather limited for this purpose. More importantly, although current PET technology achieves high molecular sensitivity with a broad set of probes for neurochemical targets, PET still lacks the capability to track dynamic changes in a time scale comparable to functional processes. Our main goal is to build an MR-compatible PET camera with very high sensitivity to enable truly dynamic PET imaging of brain neurotransmission. One of the first MR-compatible brain PET prototypes was installed at the Martinos Center in 2008 when human PET/MR imaging was in its infancy. Following a close collaboration with Siemens to address the remaining technical challenges, proof-of-principle PET/MR studies demonstrating the advantages and potential of this novel imaging modality were performed. A decade later, a new type of photon detector technology has reached a level of maturity that would allow us to build the next generation integrated system with dramatically improved spatiotemporal resolution. We propose to address the hardware and software challenges in building 7-T MR-compatible PET technology purpose-built to extend the temporal window of PET down to just a few seconds. Additionally, the substantial improvement in spatial resolution will also allow for imaging of cortical substructures and nuclei that cannot be resolved with current state-of-the-art devices. Specifically, we propose to: (1) Build the hardware components of the HSTR-BrainPET insert, integrate it with the 7-T MR scanner and characterize the combined device; (2) Implement the software for PET data acquisition, processing and image reconstruction adapted to the non-conventional geometry we are proposing; (3) Apply the integrated scanner to dynamic assessment of neurochemical events and brain activation in healthy human subjects. !
项目总结

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Horizons in Brain PET Instrumentation.
脑 PET 仪器的新视野。
  • DOI:
    10.1016/j.cpet.2023.08.001
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Allen,MagdelenaS;Scipioni,Michele;Catana,Ciprian
  • 通讯作者:
    Catana,Ciprian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciprian Catana其他文献

Ciprian Catana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciprian Catana', 18)}}的其他基金

High Performance PET/CT Scanner
高性能 PET/CT 扫描仪
  • 批准号:
    10630534
  • 财政年份:
    2023
  • 资助金额:
    $ 104.4万
  • 项目类别:
MRI-compatible BrainPET Scanner
兼容 MRI 的 BrainPET 扫描仪
  • 批准号:
    10505319
  • 财政年份:
    2022
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
  • 批准号:
    10007205
  • 财政年份:
    2020
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
  • 批准号:
    10267674
  • 财政年份:
    2020
  • 资助金额:
    $ 104.4万
  • 项目类别:
Development of 7-T MR-compatible TOF-DOI PET Detector and System Technology for the Human Dynamic Neurochemical Connectome Scanner
开发用于人体动态神经化学连接组扫描仪的 7-T MR 兼容 TOF-DOI PET 探测器和系统技术
  • 批准号:
    9789281
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
  • 批准号:
    10557135
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
  • 批准号:
    10358651
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
  • 批准号:
    8439120
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
  • 批准号:
    8601071
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
Postgraduate Training Program in Medical Imaging (PTPMI)
医学影像研究生培训计划 (PTPMI)
  • 批准号:
    10650760
  • 财政年份:
    2011
  • 资助金额:
    $ 104.4万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 104.4万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 104.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了