Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
基本信息
- 批准号:10644028
- 负责人:
- 金额:$ 104.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBRAIN initiativeBrainBrain imagingCategoriesCell NucleusCentral Nervous System DiseasesCharacteristicsCognitionCollaborationsComputer softwareDataDedicationsDevelopmentDevicesDiseaseDopamine ReceptorDoseElementsEventFloodsFunctional Magnetic Resonance ImagingGeometryGoalsHandHeadHumanImageLinkMagnetic ResonanceMagnetic Resonance ImagingMarketingMechanicsMethodsMolecularMolecular TargetNoisePerformancePeripheralPhotonsPhysiologyPositron-Emission TomographyProcessQuality ControlReceptor SignalingResearch PersonnelResolutionRestRunningSignal TransductionStructureSystemSystems IntegrationTechnologyTestingTimeWorkcognitive processconnectomedata acquisitiondesensitizationdesigndetectorexperimental studyglucose metabolismhealthy volunteerhemodynamicshuman subjectimage reconstructionimaging modalityimprovedinfancyinsightmagnetic fieldmolecular dynamicsneurochemistryneuropsychiatryneuroregulationneurotransmissionnext generationnovelpharmacologicprototypespatiotemporaltemporal measurementvisual stimulus
项目摘要
Project Summary
We seek support to develop and build the next generation 7-Tesla magnetic resonance (MR)-compatible
positron emission tomography (PET) brain scanner with dramatically improved spatiotemporal resolution
(HSTR-BrainPET). PET and MRI are two of the most powerful imaging modalities currently in use for studying
the human brain. Recently, scanners capable of simultaneous PET and MR whole-body data acquisition in
human subjects have become commercially available. However, there is no equivalent dedicated head device
on the market to address the needs of the researchers and clinicians focusing on the brain and the
performance of whole-body devices is rather limited for this purpose. More importantly, although current PET
technology achieves high molecular sensitivity with a broad set of probes for neurochemical targets, PET still
lacks the capability to track dynamic changes in a time scale comparable to functional processes. Our main
goal is to build an MR-compatible PET camera with very high sensitivity to enable truly dynamic PET imaging
of brain neurotransmission. One of the first MR-compatible brain PET prototypes was installed at the Martinos
Center in 2008 when human PET/MR imaging was in its infancy. Following a close collaboration with Siemens
to address the remaining technical challenges, proof-of-principle PET/MR studies demonstrating the
advantages and potential of this novel imaging modality were performed. A decade later, a new type of photon
detector technology has reached a level of maturity that would allow us to build the next generation integrated
system with dramatically improved spatiotemporal resolution. We propose to address the hardware and
software challenges in building 7-T MR-compatible PET technology purpose-built to extend the temporal
window of PET down to just a few seconds. Additionally, the substantial improvement in spatial resolution will
also allow for imaging of cortical substructures and nuclei that cannot be resolved with current state-of-the-art
devices. Specifically, we propose to: (1) Build the hardware components of the HSTR-BrainPET insert,
integrate it with the 7-T MR scanner and characterize the combined device; (2) Implement the software for PET
data acquisition, processing and image reconstruction adapted to the non-conventional geometry we are
proposing; (3) Apply the integrated scanner to dynamic assessment of neurochemical events and brain
activation in healthy human subjects.
!
项目摘要
我们寻求支持,以开发和构建下一代7特斯拉磁共振(MR)兼容
具有显著改进的时空分辨率的正电子发射断层摄影(PET)脑扫描器
(HSTR-BrainPET)。PET和MRI是目前用于研究的两种最强大的成像模式。
人类的大脑最近,能够同时进行PET和MR全身数据采集的扫描仪,
人类受试者已经可以在市场上买到。但是,没有等效的专用头部器械
市场上,以满足研究人员和临床医生的需求,重点是大脑和
全身装置的性能对于该目的是相当有限的。更重要的是,尽管目前的PET
PET技术通过一系列针对神经化学靶点的探针实现了高分子灵敏度,
缺乏在与功能过程可比的时间尺度上跟踪动态变化的能力。我们的主要
我们的目标是建立一个MR兼容的PET相机具有非常高的灵敏度,使真正的动态PET成像
大脑神经传递第一个MR兼容的大脑PET原型之一安装在马蒂诺
中心于2008年成立,当时人体PET/MR成像还处于起步阶段。与西门子的密切合作
为了解决剩余的技术挑战,PET/MR原理验证研究表明,
的优点和潜力,这种新的成像模式进行。十年后,一种新型光子
探测器技术已经达到了一个成熟的水平,使我们能够建立下一代集成
系统具有显著提高的时空分辨率。我们建议解决硬件问题,
构建7-T MR兼容PET技术的软件挑战,
PET的窗口缩小到几秒钟。此外,空间分辨率的大幅提高将
还允许对当前最先进技术无法分辨的皮质亚结构和核进行成像
装置.具体而言,我们建议:(1)构建HSTR-BrainPET插入物的硬件组件,
将其与7-T MR扫描仪集成,并对组合设备进行表征;(2)实现PET软件
数据采集、处理和图像重建适合于非传统的几何形状,
(3)将集成扫描仪应用于神经化学事件和大脑的动态评估
在健康的人类受试者中激活。
!
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Horizons in Brain PET Instrumentation.
脑 PET 仪器的新视野。
- DOI:10.1016/j.cpet.2023.08.001
- 发表时间:2024
- 期刊:
- 影响因子:2.6
- 作者:Allen,MagdelenaS;Scipioni,Michele;Catana,Ciprian
- 通讯作者:Catana,Ciprian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Catana其他文献
Ciprian Catana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Catana', 18)}}的其他基金
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10007205 - 财政年份:2020
- 资助金额:
$ 104.4万 - 项目类别:
Development of the Human Dynamic Neurochemical Connectome Scanner
人体动态神经化学连接组扫描仪的开发
- 批准号:
10267674 - 财政年份:2020
- 资助金额:
$ 104.4万 - 项目类别:
Development of 7-T MR-compatible TOF-DOI PET Detector and System Technology for the Human Dynamic Neurochemical Connectome Scanner
开发用于人体动态神经化学连接组扫描仪的 7-T MR 兼容 TOF-DOI PET 探测器和系统技术
- 批准号:
9789281 - 财政年份:2018
- 资助金额:
$ 104.4万 - 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
- 批准号:
10557135 - 财政年份:2018
- 资助金额:
$ 104.4万 - 项目类别:
Multimodal MR-PET Machine Learning Approaches for Primary Prostate Cancer Characterization
用于原发性前列腺癌表征的多模态 MR-PET 机器学习方法
- 批准号:
10358651 - 财政年份:2018
- 资助金额:
$ 104.4万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8439120 - 财政年份:2013
- 资助金额:
$ 104.4万 - 项目类别:
MR-assisted PET data optimization for neuroimaging studies
用于神经影像研究的 MR 辅助 PET 数据优化
- 批准号:
8601071 - 财政年份:2013
- 资助金额:
$ 104.4万 - 项目类别:
Postgraduate Training Program in Medical Imaging (PTPMI)
医学影像研究生培训计划 (PTPMI)
- 批准号:
10650760 - 财政年份:2011
- 资助金额:
$ 104.4万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 104.4万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 104.4万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 104.4万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 104.4万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 104.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 104.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 104.4万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 104.4万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 104.4万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 104.4万 - 项目类别:
Standard Grant














{{item.name}}会员




