Antimicrobial peptide mimetic activity against Candida auris
针对耳念珠菌的抗菌肽模拟活性
基本信息
- 批准号:10369013
- 负责人:
- 金额:$ 23.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-11 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibioticsAntifungal AgentsCandidaCandida albicansCandida aurisCandidiasisCationsCharacteristicsChemistryClinicalCommunicable DiseasesDangerousnessDataDevelopmentDigestionDisease OutbreaksDrug KineticsDrug resistanceEnvironmentExhibitsFutureGoalsHourImmunocompromised HostIn VitroIndividualIndustrial fungicideInfectionKidneyKineticsLeadMembraneMicrobeMicrobial BiofilmsModelingMulti-Drug ResistanceNosocomial InfectionsOral candidiasisPeptide HydrolasesPharmaceutical PreparationsPublishingResearchResistanceResistance developmentSeriesStructureTestingTherapeuticToxic effectToxicologyantimicrobial drugantimicrobial peptidebasedesigndosageeffective therapyexperimental studyfungusimmunosuppressedin vivomimeticsmortalitymouse modelmulti-drug resistant pathogennovel therapeuticspathogenpathogenic funguspeptidomimeticsresistant strainsmall moleculesynergismsystemic toxicitytreatment choicetreatment response
项目摘要
Project Summary / Abstract
Candida auris is a recently emerged pathogenic fungus, whose infections lead to high mortality in invasive
nosocomial infections world-wide. The fungus can persist long-term, and thus can often cause outbreaks. In
addition, C. auris exhibits high levels of resistance to all classes of antifungal drugs. Even those strains which
are initially susceptible to echinochandins, the treatment of choice, rapidly develop resistance. Thus, there is an
urgent need to develop new antifungal drugs to treat this pathogen. Antimicrobial peptides (AMPs) are naturally
occurring, broad-spectrum antimicrobial agents that have been examined recently for their utility as therapeutic
antibiotics and antifungals. Chief among their strengths is that microbes do not generally develop resistance to
them. Unfortunately, they are expensive to produce and are often sensitive to protease digestion. We have
recently demonstrated the potent antifungal activity of a series of inexpensive nonpeptidic compounds that mimic
AMPs in both structure and activity. These AMP mimetics exhibit strong activity against C. albicans in both
planktonic and biofilm forms, as well as against drug-resistant non-albicans Candida clinical isolates. The activity
is rapid, and fungicidal against both blastoconidia and hyphal forms, and resistant strains of Candida have failed
to be generated, suggesting that they are attractive candidates as drugs to treat C. auris infections. Most recently
it was demonstrated that these mimetics exhibit potent in vivo activity in two mouse models of oral candidiasis
and in a model of invasive candidiasis, with low in vivo systemic toxicity. Indeed, preliminary data show potent
activity of newly designed mimetics against C. auris in vitro. These initial results support the hypothesis that
these compounds are active, and non-toxic, and can be developed into novel therapeutic antifungal agents to
treat C. auris infections. In order to obtain sufficient data to investigate this in depth, this exploratory study
proposes to examine the activity of AMP mimetics against C. auris. To address this, two aims are proposed: 1)
Quantify the antifungal activity of select AMP mimetics against C. auris clinical isolates, and evaluate
the development of resistance in vitro; 2) Quantify the kinetics and activity of select AMP mimetics in
mouse models of C. auris infection. Successful completion of these aims will provide the basis for future
studies of these mimetic compounds as a treatment for C. auris, and potentially other emerging fungal
pathogens.
项目总结/摘要
耳念珠菌是近年来出现的一种致病真菌,其感染可导致侵袭性疾病的高死亡率,
全球范围内的医院感染。这种真菌可以长期存在,因此经常会引起爆发。在
addition,C.耳对所有种类的抗真菌药物表现出高水平的抗性。即使是那些
最初对治疗选择的棘突菌素敏感,很快就会产生抗药性。因此,
迫切需要开发新的抗真菌药物来治疗这种病原体。抗微生物肽(AMP)是天然的
最近已经检查了它们作为治疗剂的效用,
抗生素和抗真菌药。它们的主要优点是微生物通常不会对细菌产生耐药性。
他们不幸的是,它们的生产成本很高,并且通常对蛋白酶消化敏感。我们有
最近证明了一系列廉价的非肽类化合物的有效抗真菌活性,
AMP的结构和活性。这些AMP模拟物对C.白色念珠菌
抗真菌和生物膜形成,以及抗耐药非白色念珠菌临床分离株。活动
是快速的,并且对芽生孢子和菌丝形式都是杀真菌的,并且念珠菌的抗性菌株已经失败
这表明它们是治疗C.耳感染。最近
这些模拟物在两种小鼠口腔念珠菌病模型中显示出有效的体内活性
并且在侵袭性念珠菌病模型中具有低的体内全身毒性。事实上,初步数据显示,
新设计的模拟物对C.耳体外培养。这些初步结果支持了以下假设:
这些化合物是活性的、无毒的,并且可以被开发成新的治疗性抗真菌剂,
治疗C.耳感染。为了获得足够的数据来深入调查这一点,这项探索性研究
提出检测AMP模拟物对C.耳。为了解决这个问题,提出了两个目标:1)
定量选择的AMP模拟物对C.耳临床分离株,并评价
体外抗性的发展; 2)定量选择的AMP模拟物的动力学和活性,
小鼠模型C.耳感染。这些目标的成功实现将为今后的工作奠定基础。
这些模拟化合物作为治疗C.耳,和其他潜在的新兴真菌
病原体
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GILL DIAMOND其他文献
GILL DIAMOND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GILL DIAMOND', 18)}}的其他基金
Initiation of immune responses to SARS COV2 in the oral cavity and upper airway
在口腔和上呼吸道启动针对 SARS COV2 的免疫反应
- 批准号:
10990201 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Initiation of immune responses to SARS COV2 in the oral cavity and upper airway
在口腔和上呼吸道启动针对 SARS COV2 的免疫反应
- 批准号:
10446223 - 财政年份:2022
- 资助金额:
$ 23.04万 - 项目类别:
Initiation of immune responses to SARS COV2 in the oral cavity and upper airway
在口腔和上呼吸道启动针对 SARS COV2 的免疫反应
- 批准号:
10579342 - 财政年份:2022
- 资助金额:
$ 23.04万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 23.04万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Studentship