Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
基本信息
- 批准号:10369017
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-10 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AdsorptionAreaAttenuatedBacteriaBehaviorBiodegradationBioremediationsCarbonCarbon BlackCharacteristicsChemicalsCoalCollaborationsConsultCoupledDataDevelopmentDiffusionElectric ConductivityEngineeringEnvironmentEnvironmental Engineering technologyGrowthHydrophobicityIndividualInjectionsInterdisciplinary StudyInvestigationKineticsKnowledgeLaboratoriesLaboratory StudyLearningLife Cycle StagesMetabolic BiotransformationMicroscopyModelingNatural graphiteOrganismOxidantsPartition CoefficientPerformancePlantsPolychlorinated BiphenylsPopulationProcessPropertyReactionResearchRoleSilicon DioxideSiteSolidSorting - Cell MovementSourceSurfaceTechnologyTestinganthropogenesisbasechemical propertycontaminated sedimentdechlorinationdehalogenationdesigneffectiveness evaluationengineering designenvironmental chemicalexperimental studyfield studygeochemistryground waterimprovedinnovationlaboratory experimentmass fluxmaterials sciencemathematical modelmicrobialmicrobial communitymicroorganismmicroorganism interactionmodels and simulationmultidisciplinarynew technologyparticlephysical propertypollutantremediationsuperfund sitesynergismtransmission process
项目摘要
PROJECT SUMMARY
There is a lack of fundamental understanding on how microbial breakdown of chlorinated
organic compounds is influenced by the presence of sorptive surfaces. Several laboratory and
field studies have demonstrated a synergy between sorptive materials and microorganisms
leading to the development of material aided delivery of bioamendments in both groundwater
and sediment applications. However, a mechanistic understanding of the relationship between
sorptive surfaces and microbial dechlorination is lacking. To fill this critical knowledge gap, this
research team of chemical/environmental engineers and microbiologists will investigate the
fundamental mechanism of microbial dechlorination of chlorinated organics on sorptive surfaces
and develop quantitative models that allow optimization and engineering scaleup of enhanced
bioremediation aided by materials engineering. Improved understanding will allow better
prediction of the degradation of sorbed chemicals in the environment and enable optimization of
material science aided technologies for the delivery of biodegradation technologies.
The project will target chlorinated organics ranging from less hydrophobic compounds like
chloroethenes typically associated with groundwater and strongly hydrophobic compounds such
as PCBs typically associated with sediments. These pollutants will be investigated individually
as well as in mixtures that are commonly encountered at Superfund sites. A set of carbon-based
sorbent materials will be produced in the laboratory to provide a range of physical and chemical
properties. In addition to the lab synthesized materials, two most commonly used activated
carbons (bituminous coal based, and coconut shell based) and graphite will be tested in parallel
for comparison. Through systematic laboratory experiments, the physical and chemical
properties (such as specific surface area, pore size distribution, electron accepting capacity, and
carbon content) will be evaluated for influence on the sorption characteristics and synergy with
biodegradation of chloroethenes and PCBs. Final material selection will also be guided by
environmental sustainability considerations. Sorption and biokinetics data from the experimental
studies with optimized materials will be synthesized into advanced site models to predict
material behavior for field-scale remedial applications. Results from the modeling simulations
will allow for optimization of the engineering design for pilot and full-scale applications at
contaminated groundwater and sediment Superfund sites. This platform of combining tailored
materials with biodegradation will be adaptable for targeting other pollutant mixtures.
项目摘要
人们对微生物如何分解氯化物缺乏基本的了解,
有机化合物受到吸附表面的影响。几个实验室和
实地研究已经证明了吸附材料和微生物之间的协同作用
导致开发物质辅助输送地下水和地下水中的生物改良剂
和沉积物应用。然而,机械地理解
缺乏吸附表面和微生物脱氯。为了填补这一关键的知识空白,
由化学/环境工程师和微生物学家组成的研究小组将调查
氯代有机物在吸附表面上微生物脱氯的基本机理
并开发定量模型,使优化和工程规模的增强
材料工程辅助的生物修复。更好的理解将使
预测环境中吸附的化学品的降解,
生物降解技术的材料科学辅助技术。
该项目将针对氯化有机物,从疏水性较低的化合物,
氯乙烯通常与地下水和强疏水化合物,
因为多氯联苯通常与沉积物有关。这些污染物将被单独调查
以及在超级基金场所经常遇到的混合物中。一套碳基
吸附剂材料将在实验室生产,以提供一系列的物理和化学
特性.除了实验室合成的材料外,两种最常用的活化材料
碳(烟煤基和椰子壳基)和石墨将平行测试
以供比较。通过系统的实验室实验,
性能(如比表面积、孔径分布、电子接受能力和
碳含量)对吸附特性的影响以及与
氯乙烯和多氯联苯的生物降解。最终材料选择也将遵循
环境可持续性考虑。吸附和生物平衡数据来自实验
使用优化材料的研究将被合成到先进的场地模型中,
现场规模补救应用的材料行为。模拟结果
将允许优化工程设计的试点和全面的应用,
被污染的地下水和沉积物超级基金场地。这个平台结合了量身定制的
具有生物降解性的材料将适用于靶向其它污染物混合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Upal Ghosh其他文献
Upal Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Upal Ghosh', 18)}}的其他基金
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10156648 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10542369 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
DEVELOPMENT OF IN-SITU MERCURY REMEDIATION APPROACHES BASED ON METHYLMERCURY BIOA
基于甲基汞生物分析法的原位汞修复方法的开发
- 批准号:
9285800 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
DEVELOPMENT OF IN-SITU MERCURY REMEDIATION APPROACHES BASED ON METHYLMERCURY BIOA
基于甲基汞生物分析法的原位汞修复方法的开发
- 批准号:
8756948 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8230160 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8336827 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8514611 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7919678 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7340895 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7500234 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant