Real-time noninvasive visualization of endotracheal tube placement and 3D lung monitoring in infants with electrical impedance tomography
通过电阻抗断层扫描实时无创可视化婴儿气管插管放置和 3D 肺部监测
基本信息
- 批准号:10456497
- 负责人:
- 金额:$ 83.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademic Medical CentersAlgorithmsBedside TechnologyBlindedBronchiCessation of lifeClassificationClinicalColoradoDataDatabasesDetectionElectrodesEmergency SituationEnrollmentEsophagusFunctional ImagingGoalsHypoxemiaImageImaging TechniquesInfantIntubationIonizing radiationLeadLeftLungMapsMeasuresMechanical ventilationModificationMonitorNatureNeonatal Intensive Care UnitsNetwork-basedNewborn InfantObservational StudyOperating RoomsOutputPatientsPneumothoraxPositioning AttributeProbabilityRadiationResearchRoentgen RaysSalineScanningSourceSystemTechniquesTechnologyTimeTracheaTrainingTubeUnited StatesUniversitiesVisualizationX-Ray Computed Tomographyadverse outcomebasecarinaclassification algorithmclinical decision-makingconvolutional neural networkdeep learningdeep learning algorithmelectrical impedance tomographyendotracheallung imagingmodels and simulationneonatenovelportabilitypreventprospectivepublic health relevancereal-time imagesreconstructionside effectskillsstandard of carestemsuccessultrasoundventilationvoltage
项目摘要
PROJECT SUMMARY
Over 100,000 newborns receive mechanical ventilation through an endotracheal tube
(ETT) each year in the United States. Intubating newborns is challenging due to their
size and delicate nature, and unfortunately, nearly 40% of the initial intubation attempts
are incorrect, and the tube is inadvertently placed in the esophagus instead of the
trachea, or too deep in the main stem bronchus, leading to ventilation of only one lung,
or with the tip of the tube too high in the trachea. It is critical to detect malpositioning of
the tube promptly. The goal of this research is to develop Simultaneous Multi-Source
Electrical Impedance Tomography (SMS-EIT) technology for the bedside to correctly
and instantly identify ETT position or malposition. In this application we will combine (1)
deep learning EIT-based confirmation of ETT placement with (2) EIT images of lungs
being ventilated. Together, this would provide clinicians and bedside staff with a real-
time, closed-loop system for determining if (1) the ETT was inserted in the correct
lumen (trachea, not esophagus) and (2) if the lungs are being ventilated appropriately to
detect left or right mainstem bronchial malplacement. The same system with no change
in electrode placement could be used to monitor for inadvertent extubation and for the
onset of emergency conditions such as pneumothorax.
EIT is a noninvasive, non-ionizing functional imaging technique in which images are
formed from voltages measured on electrodes on the body arising from imperceptible
applied currents. Since EIT is a safe and portable technology with no damaging side
effects, it can be used both for continuous monitoring and as needed. Our
interdisciplinary team from GE Research, Colorado State University, and Stanford
University will develop and validate the specialized SMS-EIT system through three
specific aims. The first aim is to develop and implement an electrode configuration,
reconstruction algorithms, and hardware modifications of the GE SMS-EIT system for
the special needs of neonates and this project. In the second aim, training data and a
deep learning classification algorithm to classify intubation as correct, esophageal, too
high, or mainstem bronchial misplacement will be developed. The efficacy and clinical
feasibility of the SMS-EIT system and algorithms for the real-time detection and
classification of ETT malplacement will be evaluated in a study of 30 infants in the Level
IV NICU at Stanford University Medical Center.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Lynn Mueller其他文献
Jennifer Lynn Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Lynn Mueller', 18)}}的其他基金
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
10311877 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
9903293 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
10490818 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
EIT: a non-radiating functional imaging method for cystic fibrosis
EIT:囊性纤维化的非辐射功能成像方法
- 批准号:
8638305 - 财政年份:2013
- 资助金额:
$ 83.58万 - 项目类别:
EIT: a non-radiating functional imaging method for cystic fibrosis
EIT:囊性纤维化的非辐射功能成像方法
- 批准号:
8741735 - 财政年份:2013
- 资助金额:
$ 83.58万 - 项目类别:
Exploratory Innovations in Electrical Impedance Tomography
电阻抗断层扫描的探索性创新
- 批准号:
7798453 - 财政年份:2010
- 资助金额:
$ 83.58万 - 项目类别:
Exploratory Innovations in Electrical Impedance Tomography
电阻抗断层扫描的探索性创新
- 批准号:
8050145 - 财政年份:2010
- 资助金额:
$ 83.58万 - 项目类别:
相似海外基金
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9212055 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9348616 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
A CONFERENCE ON THE 'CRISIS' OF ACADEMIC MEDICAL CENTERS
关于学术医疗中心“危机”的会议
- 批准号:
6335654 - 财政年份:2000
- 资助金额:
$ 83.58万 - 项目类别:














{{item.name}}会员




