Scalable Development of Custom Genome Editing Technologies
定制基因组编辑技术的可扩展开发
基本信息
- 批准号:10472972
- 负责人:
- 金额:$ 151.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBacteriaBase SequenceBindingCRISPR/Cas technologyCatalogsCellsCharacteristicsClinicClinicalClustered Regularly Interspaced Short Palindromic RepeatsCollectionComputing MethodologiesCustomDNADNA SequenceDevelopmentDirected Molecular EvolutionEngineeringEnzymesGeneticGenetic DiseasesGenetic EngineeringGenomeKnowledgeMachine LearningMethodologyMethodsMutationPatientsPropertyProtein EngineeringProteinsRare DiseasesResearchResearch PersonnelSiteSpecificityStreptococcus pyogenesTechnologyTranslationsVariantVisionapplied biomedical researchcostdisease-causing mutationgene therapygenome editingimprovedinnovationnovelpreventtoolvirtual
项目摘要
PROJECT SUMMARY
Genome editing technologies have catalyzed major advances across basic and applied biomedical research
fields. Although the adaptation of CRISPR-Cas enzymes for genome editing has facilitated and dramatically
accelerated the ability to edit nucleic acid sequences in living cells, many genetic engineering approaches are
performed using a single enzyme that has notable limitations. The naturally occurring CRISPR-Cas9 effector
from the bacterium Streptococcus pyogenes (SpCas9) can function efficiently for certain editing applications, but
is not a ‘one-size-fits-all’ solution for treating the diversity of sequences that cause genetic disorders. The clinical
potential of SpCas9 is inherently limited due to the natural characteristics of the enzyme, including a requirement
to bind a short DNA motif to initiate editing. This motif only occurs in a fraction of the genome, preventing SpCas9
from editing many disease-causing mutations that do not harbor this sequence. The inability of SpCas9 to target
a broad range of DNA sites, along with other suboptimal characteristics, illustrates the need for innovations to
unlock the wide potential of genome editing in the clinic. One solution to enable more comprehensive genome
targeting is to utilize directed evolution to engineer new forms of SpCas9 that can recognize new motifs.
However, traditional protein engineering approaches remain low-throughput, costly, and laborious. Here we will
close these technological and methodological gaps by optimizing scalable methods to engineer and characterize
novel Cas variants with improved properties. Our proposed research will address prominent limitations of
CRISPR-Cas enzymes by: (1) developing scalable experimental approaches to more rapidly and effectively
engineer and characterize proteins, (2) optimizing machine learning-guided directed evolution to create a catalog
of customizable DNA editors, and (3) as proof-of-concept, thoroughly evaluate a catalog of PAM-selective editors
against mutations that cause common and rare diseases. The long-term vision of this project is to create a
catalog of bespoke editors that together can systematically target the genome without sacrificing other important
properties like specificity. To fully democratize editing, this collection of optimized CRISPR technologies will
create a virtual ‘one-stop-shop’ for researchers and clinicians seeking optimized genetic treatments for patients.
Successful completion of the proposed studies will synergize experimental and computational methods, will
provide novel scalable approaches for characterizing and improving the activities of genome editing
technologies, and will exponentially expand the capabilities within the editing ‘toolbox’. Together, the
development and implementation of a catalog of custom Cas editors and will accelerate and create a blueprint
for the translation of safe and effective CRISPR therapies to benefit patients.
项目摘要
基因组编辑技术促进了基础和应用生物医学研究的重大进展
领域的尽管CRISPR-Cas酶用于基因组编辑的适应性已经促进和显著地改善了基因组编辑的效率。
加速了在活细胞中编辑核酸序列的能力,许多基因工程方法被
使用具有显著局限性的单一酶进行。天然存在的CRISPR-Cas9效应子
来自细菌酿脓链球菌(SpCas 9)的基因可以有效地用于某些编辑应用,但是
并不是一个“一刀切”的解决方案,用于治疗导致遗传疾病的序列的多样性。临床
SpCas 9的潜力由于酶的天然特性而固有地受到限制,包括要求
结合一个短的DNA基序来启动编辑。该基序仅发生在基因组的一小部分中,阻止了SpCas 9
编辑许多致病突变,而这些突变并不包含这个序列。SpCas 9无法靶向
广泛的DNA位点,沿着与其他次优特征,说明需要创新,
释放基因组编辑在临床上的巨大潜力。一个解决方案,使更全面的基因组
靶向是利用定向进化来设计可以识别新基序的SpCas 9的新形式。
然而,传统的蛋白质工程方法仍然是低通量的,昂贵的,费力的。这里我们将
通过优化可扩展的方法来缩小这些技术和方法上的差距,
具有改进性质的新Cas变体。我们提出的研究将解决突出的局限性,
CRISPR-Cas酶通过:(1)开发可扩展的实验方法,以更快速有效地
工程和表征蛋白质,(2)优化机器学习引导的定向进化以创建目录
可定制的DNA编辑器,以及(3)作为概念验证,彻底评估PAM选择性编辑器的目录
对抗导致常见和罕见疾病的突变。该项目的长期愿景是创造一个
定制编辑器的目录,共同可以系统地靶向基因组,而不牺牲其他重要的
特性如特异性。为了使编辑完全民主化,这一系列优化的CRISPR技术将
为研究人员和临床医生创建一个虚拟的“一站式”,为患者寻求优化的基因治疗。
成功完成拟议的研究将协同实验和计算方法,将
为表征和改善基因组编辑的活性提供了新的可扩展的方法
技术,并将成倍扩大编辑'工具箱'内的功能。统称
开发和实施定制Cas编辑器目录,并将加速和创建蓝图
将安全有效的CRISPR疗法转化为有益于患者的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Peter Kleinstiver其他文献
Benjamin Peter Kleinstiver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Peter Kleinstiver', 18)}}的其他基金
Optimizing Cancer Immunotherapy Safety and Efficacy using Genome Editing
使用基因组编辑优化癌症免疫治疗的安全性和有效性
- 批准号:
9980799 - 财政年份:2017
- 资助金额:
$ 151.2万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 151.2万 - 项目类别:
Continuing Grant