Imaging Protein Synthesis on the Ribosome using Single-Molecule FRET
使用单分子 FRET 对核糖体上的蛋白质合成进行成像
基本信息
- 批准号:10471305
- 负责人:
- 金额:$ 46.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteriaBacterial ModelBacterial TranslocationBehaviorBindingBiochemicalBiologyBiophysicsCancerousCell ProliferationCellsChemicalsClinicalClinical TreatmentCodon NucleotidesCollaborationsCryoelectron MicroscopyDataData CollectionDetectionDevelopmentDrug DesignDrug TargetingEventFundingFutureGene ExpressionGene Expression RegulationHealthHumanImageIndividualInfrastructureInterventionInvestigationKineticsKnowledgeLabelLightLinkMalignant NeoplasmsMammalsMessenger RNAMethodsModelingMolecularMolecular ConformationNeoplasm MetastasisOrganismPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhasePhysiologicalProcessProtein BiosynthesisProteinsProteomeRNARNA deliveryReactionRegulationResearchResolutionRibosomesRoleSaint Jude Children&aposs Research HospitalSamplingSeriesSiteSpecificityStructural ModelsStructureStructure-Activity RelationshipSystemTechniquesTherapeutic InterventionTimeTransfer RNATranslatingTranslation ProcessTranslationsWorkYeast Model Systembiological systemsbiophysical techniquescancer therapycell growthclinical efficacyclinically relevantcombatcomparativecomputerized data processingdesigndrug actiondrug resistant pathogenefficacious treatmentfluorescence imagingfluorophoreglobal healthhuman diseaseimaging platformimprovedinfectious disease treatmentinnovationinsightkinetic modelmolecular dynamicsnovelnovel strategiesnovel therapeuticspathogenpolypeptidereconstitutionsingle moleculesingle-molecule FRETsmall moleculetargeted agenttargeted treatmenttemporal measurementthree dimensional structuretranslation factortreatment strategy
项目摘要
PROJECT ABSTRACT:
The mechanism of protein synthesis and its regulation in the cell determines the diversity and capacity of the
proteome. The central integration point for this regulatory control is the ribosome: a two-subunit, megadalton
RNA-protein assembly. Highlighting the exquisite sensitivity of translation and the ribosome to regulation, the
majority of known antibiotics either dysregulate or block ribosome function. Correspondingly, delineation of the
protein synthesis mechanism in molecular detail has the potential to inform on paradigms of gene expression
control and on how to combat the global health threat of emerging and drug resistant pathogens. As the loss of
translation control is a hallmark of cancer, a deeper understanding of the protein synthesis mechanism also
holds the promise of targeted therapeutic strategies for human disease treatments that are currently lacking.
Investigations into structure-function relationships governing the translation mechanism have been principally
conducted in bacteria using traditional ensemble methods. Such studies have revealed that the phase of
translation in which protein is synthesized from messenger RNA (mRNA), termed elongation, is the most time
intensive and commonly drug-targeted. They have also discerned that elongation entails the ribosome transiently
interacting with specific cellular components through an ordered series of events, where the decoding of each
mRNA codon is accompanied by large-scale conformational changes within the ribosome and interacting factors,
and between the ribosome and its mRNA and transfer RNA (tRNA) substrates. The need for large amounts of
homogenous material has thwarted analogous investigations of the human translation mechanism. Hence,
conserved and divergent features of the translation mechanism between single-cell organisms and mammals
that determine the molecular basis of antibiotic specificity have remained largely obscure. Here, we seek to
delineate common and distinct features of bacterial and human protein synthesis — and the translation
mechanisms in healthy and cancerous human cells — to: 1] improve the efficacies of existing antibiotics; 2]
develop new strategies for antibiotic interventions; and 3] explore the possibility of therapies targeting unchecked
proliferative cell growth and metastatic spread. We will do so by establishing quantitative, structural and kinetic
frameworks for the elemental steps of elongation in bacteria and humans using an integrated battery of
biophysical methods, including single-molecule fluorescence imaging and state-of-the-art cryo-electron
microscopy. Our collaborative investigations will delineate the order and timing of conformational events
underpinning fidelity in bacterial and human elongation cycles and the structural and mechanistic distinctions
that determine the efficacies of clinically relevant antibiotics targeting these processes. These insights will shed
light on how translation control is achieved, reveal atomic-resolution descriptions drug action on bacterial and
human ribosomes and inform opportunities for new interventions aimed at improving the efficacy and potency of
clinical treatments for infectious pathogens and human disease.
项目摘要:
细胞内蛋白质合成及其调控机制决定了细胞内蛋白质合成的多样性和能力,
蛋白质组这种调节控制的中心整合点是核糖体:一个两个亚基,兆道尔顿
RNA-蛋白质组装。突出了翻译和核糖体对调节的敏感性,
大多数已知的抗生素要么失调要么阻断核糖体功能。相应地,
蛋白质合成机制的分子细节有可能告知基因表达的范例
我们将继续就如何控制和应对新出现的耐药病原体对全球健康的威胁提供咨询意见。为损失
翻译控制是癌症的标志,对蛋白质合成机制的深入了解也
为目前缺乏的人类疾病治疗提供了靶向治疗策略的希望。
对制约翻译机制的结构-功能关系的研究主要是
在细菌中使用传统的集成方法进行。这些研究表明,
蛋白质从信使RNA(mRNA)合成的翻译,称为延伸,是最长的时间
密集的和通常针对药物的。他们还发现,延伸需要核糖体瞬时
通过一系列有序的事件与特定的细胞成分相互作用,其中每个细胞成分的解码
mRNA密码子伴随着核糖体和相互作用因子内的大规模构象变化,
以及核糖体与其mRNA和转运RNA(tRNA)底物之间的相互作用。需要大量的
同质材料阻碍了对人类翻译机制的类似研究。因此,我们认为,
单细胞生物和哺乳动物翻译机制的保守性和差异性
决定抗生素特异性的分子基础的研究仍然很模糊。在此,我们寻求
描述了细菌和人类蛋白质合成的共同和独特特征-以及翻译
在健康和癌症人类细胞中的机制-以:1]提高现有抗生素的功效; 2]
开发抗生素干预的新策略; 3]探索针对未经检查的治疗的可能性
增殖细胞生长和转移扩散。我们将通过建立定量、结构和动力学模型来实现这一目标。
框架的基本步骤的延长在细菌和人类使用一个集成的电池,
生物物理方法,包括单分子荧光成像和最先进的冷冻电子
显微镜我们的合作调查将描绘构象事件的顺序和时间
在细菌和人类的延伸周期和结构和机制的区别的基础保真度
确定针对这些过程的临床相关抗生素的功效。这些见解将使
如何实现翻译控制的光,揭示原子分辨率的描述药物对细菌的作用,
人类核糖体和信息的机会,新的干预措施,旨在提高疗效和效力,
临床治疗传染性病原体和人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott C Blanchard其他文献
Breaking the barriers of translation
打破翻译的障碍
- DOI:
10.1038/nchembio0508-275 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:13.700
- 作者:
Scott C Blanchard - 通讯作者:
Scott C Blanchard
Scott C Blanchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott C Blanchard', 18)}}的其他基金
HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
- 批准号:
10201444 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
- 批准号:
9978713 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
- 批准号:
10425409 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
Single-molecule imaging of GPCR-arrestin complexes
GPCR-arrestin 复合物的单分子成像
- 批准号:
9481871 - 财政年份:2017
- 资助金额:
$ 46.22万 - 项目类别:
Quantitative investigations of transporter dynamics and uptake at the single-mole
单摩尔转运蛋白动力学和摄取的定量研究
- 批准号:
8601955 - 财政年份:2013
- 资助金额:
$ 46.22万 - 项目类别:
Quantitative investigations of transporter dynamics and uptake at the single-mole
单摩尔转运蛋白动力学和摄取的定量研究
- 批准号:
8430544 - 财政年份:2013
- 资助金额:
$ 46.22万 - 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
- 批准号:
8541867 - 财政年份:2012
- 资助金额:
$ 46.22万 - 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
- 批准号:
8387809 - 财政年份:2012
- 资助金额:
$ 46.22万 - 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
- 批准号:
8667477 - 财政年份:2012
- 资助金额:
$ 46.22万 - 项目类别:
Imaging protein synthesis on the ribosome using single-molecule FRET
使用单分子 FRET 对核糖体上的蛋白质合成进行成像
- 批准号:
8035671 - 财政年份:2010
- 资助金额:
$ 46.22万 - 项目类别:
相似海外基金
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
- 批准号:
DP230102150 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Discovery Projects
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Australian Laureate Fellowships
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
- 批准号:
468567 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Operating Grants
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10587015 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10581945 - 财政年份:2021
- 资助金额:
$ 46.22万 - 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
- 批准号:
2599490 - 财政年份:2021
- 资助金额:
$ 46.22万 - 项目类别:
Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10358855 - 财政年份:2021
- 资助金额:
$ 46.22万 - 项目类别: