Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
基本信息
- 批准号:10392169
- 负责人:
- 金额:$ 80.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlgorithmic SoftwareAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanBioinformaticsBiologicalBiologyCause of DeathCharacteristicsClinical MedicineClinical ResearchCohort StudiesCollectionCommunitiesComplexDataData ScienceData SourcesDevelopmentDoseElectronic Health RecordEquilibriumEvaluationFailureFormulationFunctional disorderFutureGenerationsGoalsInvestmentsKnowledgeLearningMachine LearningMalignant NeoplasmsMedical GeneticsMedicineMethodologyMethodsMolecularMultiomic DataNatural Language ProcessingNeurodegenerative DisordersOutcomePathogenicityPatientsPharmaceutical PreparationsPrevention strategyProgram DevelopmentProspective cohortReportingResearchSafetySamplingSeveritiesSignal TransductionSoftware ToolsSourceStandardizationTechniquesUnited StatesUpdateValidationbasebilling datacohortcomputable phenotypescomputerized toolscostcost effectivedeep learningdisease heterogeneitydiverse datadrug candidatedrug developmentdrug qualitydrug repurposingheterogenous datahigh riskimprovedin silicoknowledge baseknowledge graphlearning strategymachine learning frameworknovelopen sourcepatient orientedpragmatic trialprospectivestudy populationsuccesstranslational impacttreatment strategy
项目摘要
ABSTRACT
Alzheimer’s disease (AD) and AD-related dementia (AD/ADRD) is the 6th leading cause of death in the United
States (US) – is an aging-related neurodegenerative disease with complex pathogenic mechanism affecting an
estimated 6.2 million Americans in 2021. Both the pathogenic mechanism and pathophysiology of AD/ADRD
are complex, creating difficulties in finding effective new treatment or prevention strategies, despite significant
investments in the last decade. On the other hand, the proliferation of large clinical research networks (CRNs)
with real-world data (RWD), such as electronic health records (EHRs), claims, and billing data among others,
offer unique opportunities to generate real-world evidence (RWE) that will have direct translational impacts on
AD/ADRD. In the past, RWD such as EHRs have limited use for AD/ADRD drug repurposing and primarily used
only for validating and evaluating the hypotheses generated by molecular level predictions of AD/ADRD
repurposing agents, partially due to a number of key methodological gaps: (1) the lack of integration with
existing rich biological and pathophysiological knowledge of AD/ADRD for hypothesis generation, (2) the lack of
validated computable phenotyping (CP) and natural language processing (NLP) algorithms and tools that can
accurately define the study populations, extract key relevant patient characteristics and meaningful outcomes
(e.g., MMSE scores to determine severity), (3) the lack of consideration on the heterogeneity of the disease (i.e.,
AD/ADRD subtypes), and (4) the lack of recognition of the inherent biases in RWD and the need of applying
causal inference principles. The goal of this project is to develop a comprehensive machine learning based
causal inference framework for generating high-throughput and high-quality drug repurposing hypotheses for
AD/ADRD by integrating heterogeneous information sources. There are three aims in this project. Aim 1 aims
at developing computable phenotypes to extract key patient characteristics and outcomes relevant to AD/ADRD
drug repurposing studies from RWD. Aim 2 aims at developing a learning-based causal inference framework
for generating drug repurposing hypotheses from RWD, a deep knowledge embedding framework for generating
drug repurposing hypotheses from biomedical knowledge bases (BKB); and a mutual information enhancement
framework that combines the information from both RWD and BKB to further improve the quality of the generated
hypotheses. Aim 3 aims at validating the generated hypotheses with diverse data sources and approaches.
The project will leverage the patient data from two large clinical research networks (CRNs) contributing to the
national Patient-Centered Clinical Research Network (PCORnet) – covering ~15 million Floridians and ~11
million New Yorkers. The developed algorithms and software will be open sourced and widely disseminated
within the CRNs and the AD/ADRD research communities.
摘要
阿尔茨海默病(AD)和AD相关痴呆(AD/ADRD)是美国第六大死因
美国-是一种与衰老相关的神经退行性疾病,其致病机制复杂,影响
据估计,2021年有620万美国人。AD/ADRD的发病机制和病理生理
是复杂的,在寻找有效的新的治疗或预防策略方面造成了困难,尽管
过去十年的投资。另一方面,大型临床研究网络(CRN)的激增
使用真实世界数据(RWD),例如电子健康记录(EHR)、索赔和计费数据等,
提供独特的机会来生成将对以下方面产生直接转换影响的真实证据(RWE)
AD/ADRD。在过去,像EHR这样的RWD在AD/ADRD药物再利用方面的使用有限,主要用于
仅用于验证和评估AD/ADRD的分子水平预测产生的假说
重新调整制剂用途,部分原因是一些关键的方法差距:(1)缺乏与
现有丰富的AD/ADRD生物学和病理生理学知识用于假说生成,(2)缺乏
经过验证的可计算表型(CP)和自然语言处理(NLP)算法和工具,可以
准确定义研究人群,提取关键的相关患者特征和有意义的结果
(例如,用于确定严重性的MMSE分数),(3)缺乏对疾病的异质性的考虑(即,
AD/ADRD亚型),以及(4)缺乏对RWD固有偏见的认识和应用的必要性
因果推论原则。这个项目的目标是开发一个全面的基于机器学习的
用于生成高通量和高质量的药物再用途假设的因果推理框架
AD/ADRD通过集成不同的信息源。这个项目有三个目标。目标1目标
开发可计算的表型以提取与AD/ADRD相关的关键患者特征和结果
来自RWD的药物再利用研究。目标2旨在开发一个基于学习的因果推理框架
为了从RWD生成药物再用途假设,一个用于生成药物再用途假设的深度知识嵌入框架
生物医学知识库(BKB)中的药物再利用假说;以及互信息增强
该框架结合了RWD和BKB的信息,以进一步提高生成的质量
假设。目标3旨在用不同的数据来源和方法来验证所生成的假设。
该项目将利用来自两个大型临床研究网络(CRN)的患者数据,为
国家以患者为中心的临床研究网络(PCORnet)-覆盖约1,500万佛罗里达州人和~11
百万纽约人。开发的算法和软件将是开源的,并将广泛传播
在CRN和AD/ADRD研究界内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 80.75万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10576853 - 财政年份:2022
- 资助金额:
$ 80.75万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 80.75万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 80.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)