Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI

利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准

基本信息

  • 批准号:
    10608470
  • 负责人:
  • 金额:
    $ 82.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2027-11-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Clinical trials are often conducted under idealized and rigorously controlled conditions to ensure internal validity (maximizing potential treatment efficacy) while balancing patient safety (e.g., serious adverse events [SAEs]); but these conditions—often reflected in trials’ eligibility criteria—paradoxically, limits (1) the ability to identify the “right” study populations of the trials, and (2) the trials’ generalizability to the target population in real-world settings. Low generalizability has long been a concern, including for Alzheimer's disease (AD) trials. AD trial participants are systematically younger than AD patients in the general population, where eligibility criteria design issues are arguably the biggest yet modifiable barriers. The FDA has launched numerous initiatives to improve trial design and enrollment practices, such as using enrichment strategies (e.g., “use patient characteristic to select a study population in which detection of a drug effect [or safety event] is more likely than it would be in an unselected population”), so that the trial participants can better reflect the real-world target population and the trials are more likely to succeed. However, there are significant gaps between the need to improve AD trial eligibility criteria design and ways available to fulfill the need in practice. On the other hand, rapid adoption of electronic health record (EHR) systems has made large collections of real-world data (RWD) that reflect the characteristics and outcomes of the patients being treated in real-world settings, available for research. The increasing availability of RWD combined with the advancements in artificial intelligence (AI), especially machine learning (ML) offer untapped opportunities to generate real-world evidence (RWE) to support eligibility criteria design for AD trials, due to a number of key methodological gaps: (1) the lack of validated computable phenotyping (CP) and natural language processing (NLP) algorithms and tools that can accurately define the populations (e.g., AD patients) of interest and extract key relevant patient characteristics and outcomes of interest (e.g., trial endpoints such as MoCA and safety profile such as SAEs) from RWD, (2) the lack of ways to identify the desired study populations (and corresponding eligibility criteria), considering the impact of criteria to potential treatment effectiveness, patient safety, and study generalizability, and (3) the need of an easy-to-use toolbox to support trialists’ eligibility criteria design process. We propose (1) novel causal- principled, explainable AI (XAI) approaches to generate RWE to facilitate AD trial eligibility criteria design, and (2) to create the web-based ALZHEIMER'S DISEASE ELIGIBILITY EXPLAINER (ADEP) tool. We will leverage two large RWD resources, the OneFlorida+ (~19 million patients from Florida, Georgia, and Alabama) and INSIGHT (~12 million New Yorkers) clinical research networks (CRNs) contributing to the national Patient-Centered Clinical Research Network (PCORnet). The success of this project will establish (1) a novel, generalizable, and XAI-based trial enrichment framework with large collections of distributed RWD, and (2) a prototype toolbox that can provide RWE to eligibility criteria design, balancing effectiveness and patient safety in the target population.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang Bian其他文献

Jiang Bian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang Bian', 18)}}的其他基金

ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
  • 批准号:
    10590413
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
  • 批准号:
    10751275
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
  • 批准号:
    10728800
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
  • 批准号:
    10682237
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
  • 批准号:
    10752848
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10576853
  • 财政年份:
    2022
  • 资助金额:
    $ 82.02万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10392169
  • 财政年份:
    2022
  • 资助金额:
    $ 82.02万
  • 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
  • 批准号:
    10677539
  • 财政年份:
    2022
  • 资助金额:
    $ 82.02万
  • 项目类别:

相似海外基金

Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
  • 批准号:
    2404955
  • 财政年份:
    2024
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant The University of Alabama: Center to Accelerate Recipe Development for Additive Manufacturing of Metals (CARDAMOM)
IUCRC 规划拨款阿拉巴马大学:加速金属增材制造配方开发中心 (CARDAMOM)
  • 批准号:
    2333363
  • 财政年份:
    2024
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
Conference: Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2243027
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
Conference: HBCU Excellence in Research and EPSCoR Regional Outreach Workshop at Alabama State University (HERO-ASU)
会议:阿拉巴马州立大学 HBCU 卓越研究和 EPSCoR 区域外展研讨会 (HERO-ASU)
  • 批准号:
    2404231
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
RET Site: Engaging and Training Alabama STEM Teachers in Sensing Technologies
RET 网站:让阿拉巴马州 STEM 教师参与传感技术并对其进行培训
  • 批准号:
    2302144
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
Equipment: Facilitating Optical X-Ray Techniques for Research and Organized Training at Alabama State University (FOXTROT-ASU)
设备: 阿拉巴马州立大学 (FOXTROT-ASU) 促进光学 X 射线技术研究和组织培训
  • 批准号:
    2324575
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
NRT: Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT)
NRT:阿拉巴马州精密计时当代教育合作组织 (ACCEPT)
  • 批准号:
    2244074
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Standard Grant
Louis Stokes Renewal STEM Pathways and Research Alliance: Alabama LSAMP
Louis Stokes 更新 STEM 途径和研究联盟:阿拉巴马州 LSAMP
  • 批准号:
    2308715
  • 财政年份:
    2023
  • 资助金额:
    $ 82.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了