An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
基本信息
- 批准号:10728800
- 负责人:
- 金额:$ 116.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:African American populationAlzheimer&aposs DiseaseAlzheimer&aposs Disease PathwayAlzheimer&aposs disease riskBiological MarkersCardiovascular DiseasesCaucasiansCharacteristicsChronic DiseaseChronic Obstructive Pulmonary DiseaseClinicalClinical DataClinical PathwaysClinical ResearchComplexConsentDataData Coordinating CenterDatabasesDementiaDevelopmentDiagnosisDisease ProgressionElectronic Health RecordEligibility DeterminationEthnic PopulationFast Healthcare Interoperability ResourcesFloridaHealthHealth systemHealthcareImpaired cognitionIncidenceInformaticsIntervention TrialKnowledgeLinkMapsMedicalMental DepressionMethodsModelingNatural Language ProcessingNatureObstructive Sleep ApneaOnset of illnessOntologyOutcomeParticipantPatientsPatternPerformancePeriodontitisPhenotypePrevalenceProcessPublic HealthRecordsResearchResearch PersonnelRiskRisk FactorsStandardizationStructureSystemTestingWorkWorld Healthaging populationapplication programming interfaceburden of illnesscare costscare seekingcerebral atrophycognitive benefitscognitive testingcognitive trainingcohortcomorbiditydata formatdata standardsdeep learningefficacy evaluationelectronic health record systemhealth recordinsightinterestinteroperabilitymachine learning modelmild cognitive impairmentmultiple chronic conditionsnoveloutcome predictionpatient stratificationpatient subsetspharmacologicphenotyping algorithmracial populationrecruitresponsescreeningstructured datasuccesstoolunstructured data
项目摘要
Summary
The fragmented clinical data in EHRs and trials makes it hard to study the relationship between Alzheimer's
disease (AD) and multiple chronic diseases (MCC). This is because the data is often spread out across different
platforms and databases, making it difficult to get a complete picture. In addition, the data is often incomplete.
This can lead to gaps in research and missed opportunities to understand MCC’s contribution to AD progression.
To overcome these challenges, we will develop interoperable electronic health records (EHR) with an application
programming interface (API) that follows the standard data format, i.e., Fast Healthcare Interoperability
Resources (FHIR). Partnering with ACTIVE MIND, an interventional trial that examines the potential efficacy of
cognitive training (CT) in reducing dementia incidences, we will link, consent, extract and harmonize local EHRs
and other relevant health information from ~1,000 patients. We will develop ontology models and use them to
guide the natural language processing (NLP) models to distill, organize, and convert MCC and relevant concepts
into FHIR-accessible data. Using these data together with FHIR-mapped structured data, we propose a
demonstration project to develop novel missing data imputation and computational phenotyping models to stratify
heterogeneous subpopulations based on longitudinal MCC patterns to predict their AD onset risks.
总结
电子健康记录和试验中支离破碎的临床数据使得研究阿尔茨海默氏症与
疾病(AD)和多种慢性疾病(MCC)。这是因为数据通常分布在不同的
平台和数据库,很难得到一个完整的图片。此外,数据往往不完整。
这可能导致研究空白,并错过了解MCC对AD进展的贡献的机会。
为了克服这些挑战,我们将开发具有应用程序的可互操作电子健康记录(EHR
遵循标准数据格式的编程接口(API),即,快速医疗保健互操作性
资源(FHIR)。与ACTIVE MIND合作,这是一项干预性试验,旨在检查
认知训练(CT)在降低痴呆症发病率,我们将链接,同意,提取和协调当地的EHR
以及约1,000名患者的其他相关健康信息。我们将开发本体模型,并使用它们来
引导自然语言处理(NLP)模型提取、组织和转换MCC及相关概念
转换成FHIR可访问的数据。使用这些数据与FHIR映射的结构化数据,我们提出了一个
示范项目,开发新的缺失数据填补和计算表型模型,
基于纵向MCC模式的异质亚群来预测其AD发病风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 116.82万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10576853 - 财政年份:2022
- 资助金额:
$ 116.82万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 116.82万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 116.82万 - 项目类别: