Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
基本信息
- 批准号:10576853
- 负责人:
- 金额:$ 77.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgingAlgorithmic SoftwareAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanBioinformaticsBiologicalBiologyCause of DeathCharacteristicsClinical MedicineClinical ResearchCohort StudiesCollectionCommunitiesComplexComputer softwareDataData ScienceData SourcesDevelopmentDoseElectronic Health RecordEvaluationFailureFormulationFunctional disorderFutureGenerationsGoalsInvestmentsKnowledgeLearningMachine LearningMalignant NeoplasmsMedical GeneticsMedicineMethodologyMethodsMolecularMultiomic DataNatural Language ProcessingNeurodegenerative DisordersOutcomePathogenicityPatientsPharmaceutical PreparationsPrevention strategyProgram DevelopmentProliferatingProspective cohortReportingResearchSafetySamplingSeveritiesSignal TransductionSoftware ToolsSourceStandardizationTechniquesUnited StatesUpdateValidationbilling datacohortcomputable phenotypescomputerized toolscostcost effectivedeep learningdisease heterogeneitydiverse datadrug candidatedrug developmentdrug qualitydrug repurposingheterogenous datahigh riskimprovedin silicoknowledge baseknowledge graphlearning strategymachine learning frameworkmanufacturenovelnovel therapeutic interventionopen sourcepatient orientedphenotyping algorithmpragmatic trialprospectivestudy populationsuccesstooltranslational impact
项目摘要
ABSTRACT
Alzheimer’s disease (AD) and AD-related dementia (AD/ADRD) is the 6th leading cause of death in the United
States (US) – is an aging-related neurodegenerative disease with complex pathogenic mechanism affecting an
estimated 6.2 million Americans in 2021. Both the pathogenic mechanism and pathophysiology of AD/ADRD
are complex, creating difficulties in finding effective new treatment or prevention strategies, despite significant
investments in the last decade. On the other hand, the proliferation of large clinical research networks (CRNs)
with real-world data (RWD), such as electronic health records (EHRs), claims, and billing data among others,
offer unique opportunities to generate real-world evidence (RWE) that will have direct translational impacts on
AD/ADRD. In the past, RWD such as EHRs have limited use for AD/ADRD drug repurposing and primarily used
only for validating and evaluating the hypotheses generated by molecular level predictions of AD/ADRD
repurposing agents, partially due to a number of key methodological gaps: (1) the lack of integration with
existing rich biological and pathophysiological knowledge of AD/ADRD for hypothesis generation, (2) the lack of
validated computable phenotyping (CP) and natural language processing (NLP) algorithms and tools that can
accurately define the study populations, extract key relevant patient characteristics and meaningful outcomes
(e.g., MMSE scores to determine severity), (3) the lack of consideration on the heterogeneity of the disease (i.e.,
AD/ADRD subtypes), and (4) the lack of recognition of the inherent biases in RWD and the need of applying
causal inference principles. The goal of this project is to develop a comprehensive machine learning based
causal inference framework for generating high-throughput and high-quality drug repurposing hypotheses for
AD/ADRD by integrating heterogeneous information sources. There are three aims in this project. Aim 1 aims
at developing computable phenotypes to extract key patient characteristics and outcomes relevant to AD/ADRD
drug repurposing studies from RWD. Aim 2 aims at developing a learning-based causal inference framework
for generating drug repurposing hypotheses from RWD, a deep knowledge embedding framework for generating
drug repurposing hypotheses from biomedical knowledge bases (BKB); and a mutual information enhancement
framework that combines the information from both RWD and BKB to further improve the quality of the generated
hypotheses. Aim 3 aims at validating the generated hypotheses with diverse data sources and approaches.
The project will leverage the patient data from two large clinical research networks (CRNs) contributing to the
national Patient-Centered Clinical Research Network (PCORnet) – covering ~15 million Floridians and ~11
million New Yorkers. The developed algorithms and software will be open sourced and widely disseminated
within the CRNs and the AD/ADRD research communities.
摘要
阿尔茨海默病(AD)和AD相关痴呆(AD/ADRD)是美国第六大死亡原因,
是一种与衰老相关的神经退行性疾病,具有复杂的致病机制,
预计到2021年将有620万美国人。AD/ADRD的发病机制和病理生理
复杂,在寻找有效的新的治疗或预防策略方面造成困难,
近十年来的投资。另一方面,大型临床研究网络(CRN)的激增,
使用真实世界数据(RWD),例如电子健康记录(EHR)、索赔和账单数据等,
提供了独特的机会,以产生现实世界的证据(RWE),将有直接的转化影响,
AD/ADRD。过去,RWD(如EHR)在AD/ADRD药物再利用方面的用途有限,主要用于
仅用于验证和评价AD/ADRD分子水平预测产生的假设
重新利用代理人,部分原因是一些关键的方法差距:(1)缺乏整合,
现有丰富的AD/ADRD生物学和病理生理学知识可用于假设生成,(2)缺乏
经过验证的可计算表型(CP)和自然语言处理(NLP)算法和工具,
准确定义研究人群,提取关键相关患者特征和有意义的结局
(e.g., MMSE评分以确定严重程度),(3)缺乏对疾病异质性的考虑(即,
AD/ADRD亚型),以及(4)缺乏对RWD固有偏倚的认识和应用
因果推理原则这个项目的目标是开发一个全面的机器学习的基础上,
因果推理框架,用于生成高通量和高质量的药物再利用假设,
AD/ADRD通过整合异构信息源。这个项目有三个目标。目标1
开发可计算表型,以提取与AD/ADRD相关的关键患者特征和结局
来自RWD的药物再利用研究。目标2旨在发展一个以学习为基础的因果推理框架
用于从RWD生成药物再利用假设,用于生成
来自生物医学知识库(BKB)的药物再利用假设;以及互信息增强
结合来自RWD和BKB的信息,以进一步提高生成的
假设目标3旨在通过不同的数据来源和方法验证生成的假设。
该项目将利用来自两个大型临床研究网络(CRN)的患者数据,
国家以患者为中心的临床研究网络(PCORnet)-覆盖约1500万佛罗里达人和约1100万佛罗里达人。
百万纽约人开发的算法和软件将开源并广泛传播
在CRN和AD/ADRD研究社区内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 77.52万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 77.52万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 77.52万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 77.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 77.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 77.52万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 77.52万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 77.52万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 77.52万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 77.52万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 77.52万 - 项目类别: