Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
基本信息
- 批准号:10442593
- 负责人:
- 金额:$ 57.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAdoptionAlgorithmsAwardBenignBreastCharacteristicsClinicalClinical DataClinical effectivenessComputer SimulationCoupledDataDetectionDevelopmentDiagnosticDiseaseEquationEvaluationFormulationFrequenciesHeightImageIonizing radiationLocationMammary UltrasonographyMammographyMeasuresMethodsModalityMorphologic artifactsNoiseNormal tissue morphologyOutcomePhysicsPhysiologic pulseProbabilityPropertyRadiationReaderReportingResolutionRoentgen RaysScreening procedureShapesSliceSpecificitySpeedSystemTechnologyThinnessTimeTissuesTransducersVisualWorkX-Ray Computed Tomographyaccurate diagnosisattenuationbasebreast cancer diagnosisbreast imagingbreast lesionclinical applicationexperienceimage reconstructionimaging modalityimprovedinnovationmalignant breast neoplasmmemberpublic health relevancequantitative ultrasoundradiologistreconstructionsoft tissuesoundtomographyultrasound
项目摘要
ABSTRACT
The broad objective of this project is to develop and refine advanced tomographic image reconstruction
methods for ultrasound computed tomography (UST), referred to as waveform inversion methods, which will
permit high resolution and quantitative breast imaging. These methods will yield volumetric estimates of the
speed of sound (SOS) and acoustic attenuation (AA) distributions within the breast. The SOS and AA
represent bio-parameters that can reveal differences in the geometric and elastic properties of tissue. Such
information can greatly facilitate the differentiation of breast cancer from normal tissue or benign disease.
Accordingly, UST holds great potential for improving the detection and management of breast cancer since it
exploits effective endogenous tissue contrasts, is radiation- and breast-compression-free, and is relatively
inexpensive. The SoftVue whole breast UST system developed by members of our team has been awarded
FDA 510(k) clearance for diagnostic applications.
Most reported methods for breast UST are ray-based and do not take into account acoustic diffraction
effects; this results in images of relatively poor spatial resolution and accuracy. This is highly undesirable for
breast imaging applications, in which the ability to resolve fine features is important for distinguishing healthy
from diseased tissues. Waveform inversion methods for UST image reconstruction are based on the full
acoustic wave equation and can circumvent the limitations of ray-based methods, thereby permitting high-
resolution quantitative UST breast imaging. However, the application of waveform inversion methods to breast
UST employing ring-transducer arrays has to-date employed 2D reconstruction methods to estimate sectional
UST images. Because 3D wave propagation physics and the focusing properties of the transducers are not
accounted for in this 2D approach, the images can contain significant artifacts and degraded spatial resolution.
In this project, we will develop and optimize 3D UST waveform inversion methods for reconstructing SOS
and AA images of the breast of unprecedented quality. These methods will utilize acoustic data measured at
one or more locations of the ring-transducer array and will compensate for 3D wave physics and the focusing
properties of the transducers. In this approach, a thin (in height) volume will be reconstructed instead of a
single 2D slice. Whole breast imaging can then be accomplished by merging the thin reconstructed volumes
corresponding to different locations instead of stacking lower quality 2D slices as done in existing 2D methods.
The developed methods will be evaluated and refined by use of phantom and clinical data. The specific aims of
this project are: (1) Develop waveform inversion methods for high resolution SOS imaging; (2) Develop
waveform inversion methods for high resolution AA imaging; (4) Refinement of reconstruction methods via
breast phantom studies; (5) Assessment and refinement of reconstruction methods using clinical data.
摘要
这个项目的主要目标是开发和完善先进的断层图像重建
用于超声计算机断层摄影(UST)的方法,称为波形反演方法,其将
允许高分辨率和定量乳房成像。这些方法将产生的体积估计的
乳房内的声速(SOS)和声衰减(AA)分布。SOS和AA
表示可以揭示组织的几何和弹性特性的差异的生物参数。等
信息可以极大地促进乳腺癌与正常组织或良性疾病的鉴别。
因此,UST具有改善乳腺癌检测和管理的巨大潜力,因为它
利用有效的内源性组织对比,无辐射和乳房压迫,
便宜.我们团队成员开发的SoftVue全乳UST系统已被授予
FDA 510(k)批准用于诊断应用。
大多数报道的乳腺超声检查方法都是基于射线的,没有考虑声学衍射
影响;这导致图像的空间分辨率和精度相对较差。这是非常不可取的,
乳腺成像应用,其中分辨精细特征的能力对于区分健康
从病变组织中分离出来超声图像重建的波形反演方法是基于完整的
声波方程,并可以规避基于射线的方法的限制,从而允许高-
分辨率定量UST乳腺成像。然而,将波形反演方法应用于乳房
采用环形换能器阵列的UST迄今已采用2D重建方法来估计截面
UST图像。因为换能器的3D波传播物理和聚焦特性不是
考虑到这种2D方法,图像可能包含显著的伪影和退化的空间分辨率。
在这个项目中,我们将开发和优化三维UST波形反演方法,以重建SOS
以及前所未有的高质量的AA级乳房图像。这些方法将利用测量的声学数据,
环形换能器阵列的一个或多个位置,并将补偿3D波物理和聚焦
换能器的特性。在这种方法中,将重建薄(高度)体积,而不是重建高体积。
单个2D切片。然后通过合并薄的重建体积可以完成整个乳房成像
而不是像现有2D方法中那样堆叠较低质量的2D切片。
将通过使用体模和临床数据对所开发的方法进行评价和改进。的具体目标
该项目的主要内容是:(1)开发高分辨率SOS成像的波形反演方法;(2)开发
高分辨率AA成像的波形反演方法;(4)通过
乳腺体模研究;(5)使用临床数据评估和改进重建方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Forward Model Incorporating Elevation-Focused Transducer Properties for 3-D Full-Waveform Inversion in Ultrasound Computed Tomography.
- DOI:10.1109/tuffc.2023.3313549
- 发表时间:2023-10
- 期刊:
- 影响因子:3.6
- 作者:Li, Fu;Villa, Umberto;Duric, Nebojsa;Anastasio, Mark A
- 通讯作者:Anastasio, Mark A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
- 批准号:
10705173 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
- 批准号:
9927852 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
University Undergraduate Student Research Awards