Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
基本信息
- 批准号:10652078
- 负责人:
- 金额:$ 46.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-06-14
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAdultAffectiveAftercareAlgorithmsAnorexia NervosaBehavior DisordersBehavior assessmentBehavioralBinge EatingBulimiaChronicCircadian DysregulationCircadian RhythmsCognitiveDataData CollectionDiagnosisDiagnosticDimensionsDisease remissionEating DisordersEcological momentary assessmentEventEvidence based treatmentFeelingFrightFundingFutureGlobal Positioning SystemGoalsHealth PersonnelHeart RateHyperphagiaIndividualLeadMachine LearningMaintenanceMeasuresMethodsModelingOutcomeParticipantPatient Self-ReportPatientsPersonsPhysiologicalPhysiologyPrecision Medicine InitiativeProceduresPublishingRecoveryRelapseReportingResearchSample SizeSamplingSeveritiesSignal TransductionSleepSleep Wake CycleSleep disturbancesSymptomsSystemTechniquesTestingThinkingThinnessTimeUnited States National Institutes of HealthWeight GainWorkdietingeffective therapyfeature detectionfollow up assessmentfollow-upheart rate variabilityimprovedinnovationmobile computingnovelnovel therapeuticspersonalized medicineprediction algorithmpredictive modelingpreventpublic health relevancepurgerecruitrelapse preventionresponsesensorsensor technologysevere mental illnessstandard caretreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Eating disorders (EDs) are severe mental illnesses. Efficacy rates of evidence-based treatments
are low (<50% response) and relapse rates are high (>35% relapse after treatment). The low
treatment response and high relapse rates are due, in part, to the fact that EDs are heterogeneous
conditions. As such, idiographic (i.e., one person) models are needed that can predict and
ultimately prevent, onset of both problematic ED behaviors (e.g., purging, binge eating) and
remission/relapse. The current renewal application capitalizes on our existing data collection
(N=120 ED) to both increase our sample size (N=140) and extend data collection to two years of
follow-up. Our study goals are to: (1) characterize and predict shorter-and-longer-term relapse
and remission (2) use real-time physiological data algorithms to predict onset of ED behaviors,
relapse, and remission. We will use a multiple units of analysis approach combined with novel,
cutting-edge advances in idiographic modeling. In our currently funded proposal, we collected
intensive real-time data using mobile and sensor-technology from 120 individuals with a diagnosis
of anorexia nervosa (AN), atypical AN, and bulimia nervosa across 30 days and assessed follow-
up at 1-month and 6-months. In this renewal we will collect additional follow-ups at 18-month and
2-years and include behavioral assessments of body disturbances and behavioral avoidance. We
will also collect a new subsample of participants (n=20) and include additional assessment of
global positioning system (GPS), the sleep-wake cycle, and circadian rhythm disruption (CR).
These additional assessments will improve characterization of relapse, capture a greater
percentage of relapse events (~35% across two years), improve accuracy of prediction for ED
behaviors, relapse, and remission, and identify which features (e.g., GPS, sleep-wake cycle)
contribute to improved accuracy. Specific aims are to: (1) well-characterize longer-term (18 month
and 2 years) relapse/remission in the existing sample of EDs, (2) test if both idiographic EMA and
physiological (HR/HRV, EDA, ACC) features predict longer-term relapse/remission and (3)
determine if the addition of GPS and sleep-wake ACC & CR data improve accuracy of our
predictive algorithms. The proposed research uses highly innovative methods, combining
intensive longitudinal data collection methods, all remote procedures, novel advances in
idiographic modeling and sensor-technology, and state-of-the-art machine learning techniques.
These data will lead directly to novel therapeutics such as just-in-time mobile and sensor alert
systems that can provide guidance to both clinicians and patients on how to prevent problematic
ED behaviors and ultimately increase remission and decrease relapse rates.
项目摘要/摘要
饮食失调(ED)是严重的精神疾病。循证治疗的功效率
低(<50%的响应),复发率很高(治疗后> 35%复发)。低
治疗反应和高复发率部分是由于ED是异质的事实
状况。因此,需要进行印度(即一个人)模型,以预测和
最终阻止了有问题的ED行为(例如,清除,暴饮暴食)和
缓解/复发。当前的续订应用程序大写了我们现有的数据收集
(n = 120 ED)既增加了我们的样本量(n = 140),并将数据收集扩展到两年
后续。我们的研究目标是:(1)表征和预测较短的较长期复发
(2)使用实时生理数据算法来预测ED行为的发作,
复发和缓解。我们将使用多个分析方法与新颖的分析方法相结合
独特建模的尖端进步。在我们目前的资助建议中,我们收集了
使用来自120名有诊断的人的移动和传感器技术的密集实时数据
在30天内神经性厌食(AN),非典型AN和神经性神经性神经性的
在1个月和6个月的时间内。在此续约中,我们将在18个月收集其他随访,然后
2年,包括对身体障碍和避免行为的行为评估。我们
还将收集一个新的参与者子样本(n = 20),并包括
全球定位系统(GPS),睡眠效果周期和昼夜节律破坏(CR)。
这些额外的评估将改善复发的特征,捕获更大的
复发事件的百分比(两年内约35%),提高了ED的预测准确性
行为,复发和缓解,并识别哪些特征(例如GPS,睡眠效果周期)
有助于提高准确性。具体目的是:(1)长期表征良好(18个月
和2年)在现有的ED样本中复发/缓解,(2)测试Indographic EMA和是否同时
生理(HR/HRV,EDA,ACC)特征可预测长期复发/缓解和(3)
确定添加GPS和Sleep-Wake ACC&CR数据是否提高了我们的准确性
预测算法。拟议的研究使用了高度创新的方法,结合了
密集的纵向数据收集方法,所有远程程序,新的进步
印度建模和传感器技术以及最先进的机器学习技术。
这些数据将直接导致新颖的治疗剂,例如即时移动和传感器警报
可以为临床医生和患者提供指导的系统,以防止有问题
ED行为并最终增加缓解并降低复发率。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not niche: eating disorders as an example in the dangers of overspecialisation.
不是利基市场:饮食失调是过度专业化危险的一个例子。
- DOI:10.1192/bjp.2023.160
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Haynos,AnnF;Egbert,AmyH;Fitzsimmons-Craft,EllenE;Levinson,CheriA;Schleider,JessicaL
- 通讯作者:Schleider,JessicaL
Are central eating disorder network symptoms sensitive to item selection and sample? Implications for conceptualization of eating disorder psychopathology from a network perspective.
中枢性饮食失调网络症状对项目选择和样本敏感吗?
- DOI:10.1037/abn0000865
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Cusack,ClaireE;Vanzhula,IrinaA;Sandoval-Araujo,LuisE;Pennesi,Jamie-Lee;Kelley,SeanW;Levinson,CheriA
- 通讯作者:Levinson,CheriA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheri Alicia Levinson其他文献
Cheri Alicia Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10425019 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10611448 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10612256 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10579874 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10372099 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10542414 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10347759 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
Diversity Supplement for 'Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes'
“饮食失调症状的个性化网络和传感器技术算法预测饮食失调结果”的多样性补充
- 批准号:
10329150 - 财政年份:2021
- 资助金额:
$ 46.95万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unraveling the mechanisms of a novel music intervention for physical activity promotion in older adults
揭示新型音乐干预促进老年人身体活动的机制
- 批准号:
10766983 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Characterizing Acute Exercise Response in Restrictive Eating Disorders
限制性饮食失调的急性运动反应特征
- 批准号:
10739107 - 财政年份:2023
- 资助金额:
$ 46.95万 - 项目类别:
Using real-time data capture to examine affective mechanisms as mediators of physical activity adherence in interventions
使用实时数据捕获来检查情感机制作为干预措施中身体活动依从性的中介
- 批准号:
10502175 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Optimizing Music-Based Interventions for Stroke Rehabilitation
优化基于音乐的中风康复干预措施
- 批准号:
10607156 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别:
Establishing Efficacy for the Congenital Heart Disease Physical Activity Lifestyle Intervention
确定先天性心脏病体力活动生活方式干预的功效
- 批准号:
10709643 - 财政年份:2022
- 资助金额:
$ 46.95万 - 项目类别: