Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
基本信息
- 批准号:10653922
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectCellsCellular biologyChIP-seqChronicClinicalCommunicable DiseasesComputer ModelsDataDetectionDevelopmentDimensionsDiseaseExclusionGene ExpressionGenesGenetic TranscriptionGenomicsHuman Herpesvirus 4Immune EvasionImmune checkpoint inhibitorImmunityInfectionInflammationInvestigationLinkMachine LearningMalignant - descriptorMapsMethodsModelingMolecularMolecular Classification of TumorsMutationNatureOutcomePathogenesisPositioning AttributeRNA-Binding ProteinsRegulationResistanceSamplingSystemTherapeuticVariantViralVirus Integrationcomputerized toolsdata miningeffective interventiongenome analysisgenome-widegenomic datainsightlensmolecular subtypesmortalityneoplastic cellnovelpathogenpersonalized cancer therapypersonalized interventionpersonalized medicineprogramssuccesstooltool developmenttranscription factortreatment strategytumor
项目摘要
Summary: Dissecting host-pathogen interactions through the lens of genomics
Current investigation of mechanisms underlying many diseases relies on the acquisition of multi-dimensional
genomics data. The utility of these data is, however, offset by the lag in development of tools and models to fully
interrogate them. In the context of infectious diseases, such data contains molecular information including gene
transcription, regulation, and variations from both the infecting pathogen and the host cell, providing a snapshot
of the host and pathogen interactions (HPIs). These HPIs determine infection outcomes. For instance, when a
pathogen evades, or evolves resistance to defensive host immunity via a multifaceted HPI, it can result in
persisting infection, chronic inflammation, malignant transformation, and/or elevated mortality. Recent successes
in overcoming immune-evasion of infected tumor cells with checkpoint inhibitors exemplifies the clinical gains
that can be made by identifying and specifically targeting essential mechanisms of HPIs. Hence, precisely
identifying new mode(s) of HPIs is critical for development of effective and personalized interventions.
The molecular mechanisms of HPIs underpinning disease can be identified from genomics data. For example,
information on whether a transcription factor (TF) regulates genes from either host or pathogen, or both, can be
captured by chromatin immunoprecipitation (ChIP) sequencing of infected host cells. This means that integrative
analysis of genome-scale data can provide a platform for large-scale and unbiased detection of often multi-
dimensional and novel facets of HPIs in host cells. However, there is a lack of data mining tools and models to
extract such information. More importantly, the available analysis tools typically focus on data from either the
host or the pathogen and not on the interactions occurring between the two, excluding us from investigating the
full HPI spectrum. Thus, novel methods to determine HPIs by simultaneously modeling both host and pathogen
data are critical for understanding key cellular mechanisms and developing treatment strategies.
My lab specializes in developing computational models to construct HPI maps and to experimentally validate
them. As proof-of-principle, we produced a comprehensive HPI map from sequencing samples from large
numbers of tumors caused by Epstein–Barr virus. This map delivered unprecedented insights, identifying novel
viral integrations, mutations linked to viral reactivation and providing molecular classification of tumors expected
to yield individualized cancer therapy. Therefore, my lab is uniquely positioned to uncover mechanistic insights
from HPIs. Our program seeks to develop new models and machine learning tools to construct HPI maps in
several diseases by focusing on the following major questions: 1) how do expression, integration, and mutational
landscapes of host and pathogen affect pathogenesis of disease?; 2) what is the nature of physical HPIs and
cross-regulation by major host and pathogen factors that modulate gene expression, such as TFs and RNA
binding proteins?; 3) how do HPIs define molecular subtypes to guide personalized treatments? We expect to
identify novel HPIs and provide systems-level understanding of mechanisms critical to cell biology.
总结:通过基因组学的透镜剖析宿主与病原体的相互作用
目前,对许多疾病的机制的研究依赖于对多维信息的获取。
基因组学数据。然而,这些数据的效用被工具和模型的开发滞后所抵消,
审问他们。在传染病的背景下,这些数据包含分子信息,包括基因
转录、调节和来自感染病原体和宿主细胞的变异,提供了一个快照。
宿主和病原体相互作用(HPI)。这些HPI决定感染结果。例如,当
病原体通过多方面的HPI逃避或进化出对防御性宿主免疫的抗性,
持续感染、慢性炎症、恶性转化和/或死亡率升高。最近取得的成功
用检查点抑制剂克服受感染肿瘤细胞的免疫逃避,
这可以通过识别和专门针对HPI的基本机制来实现。因此,准确地说,
识别新的HPI模式对于开发有效和个性化的干预措施至关重要。
支持疾病的HPI的分子机制可以从基因组学数据中鉴定。例如,在一个示例中,
关于转录因子(TF)是否调节来自宿主或病原体或两者的基因的信息,可以
通过感染宿主细胞的染色质免疫沉淀(ChIP)测序捕获。这意味着,
基因组规模数据的分析可以为大规模和无偏检测提供平台,
在宿主细胞中的HPI的三维和新颖的方面。然而,缺乏数据挖掘工具和模型,
提取这些信息。更重要的是,可用的分析工具通常关注来自
宿主或病原体,而不是两者之间发生的相互作用,排除我们调查
完整的HPI光谱。因此,通过同时模拟宿主和病原体来确定HPI的新方法,
数据对于理解关键细胞机制和制定治疗策略至关重要。
我的实验室专门开发计算模型来构建HPI图,并通过实验验证
他们作为原理证明,我们从来自大样本的测序样品中产生了一个全面的HPI图谱。
EB病毒引起的肿瘤数量。这张地图提供了前所未有的见解,
病毒整合、与病毒再激活相关的突变,并提供预期的肿瘤分子分类
来提供个性化的癌症治疗。因此,我的实验室是唯一的定位,
从HPI。我们的计划旨在开发新的模型和机器学习工具来构建HPI地图,
通过关注以下主要问题来研究几种疾病:1)表达,整合和突变如何影响
宿主和病原体的景观影响疾病的发病机制; 2)物理HPI的性质是什么,
调节基因表达的主要宿主和病原体因子(如TF和RNA)的交叉调节
结合蛋白?3)HPI如何定义分子亚型以指导个性化治疗?我们期望
识别新的HPI并提供对细胞生物学关键机制的系统级理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majid Kazemian其他文献
Majid Kazemian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Majid Kazemian', 18)}}的其他基金
Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
- 批准号:
10241946 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
- 批准号:
10461156 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Joint submission for administrative supplement proposal: HIPAA aligned storage and computing solution
联合提交行政补充提案:HIPAA 一致的存储和计算解决方案
- 批准号:
10388739 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
- 批准号:
10597831 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
- 批准号:
10796563 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Dissecting host-pathogen interactions through the lens of genomics
通过基因组学的视角剖析宿主与病原体的相互作用
- 批准号:
10028454 - 财政年份:2020
- 资助金额:
$ 38.18万 - 项目类别:
Expression, regulation, and role of enhancer RNAs in T helper cells
T 辅助细胞中增强子 RNA 的表达、调控和作用
- 批准号:
8804510 - 财政年份:2017
- 资助金额:
$ 38.18万 - 项目类别:
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Molecular and cellular biology of T regulatory cells
T 调节细胞的分子和细胞生物学
- 批准号:
354040 - 财政年份:2016
- 资助金额:
$ 38.18万 - 项目类别:
Operating Grants
Molecular and cellular biology of T regulatory cells
T 调节细胞的分子和细胞生物学
- 批准号:
223697 - 财政年份:2011
- 资助金额:
$ 38.18万 - 项目类别:
Operating Grants
Cellular biology of podocytes as immunocompetent cells
足细胞作为免疫活性细胞的细胞生物学
- 批准号:
21790817 - 财政年份:2009
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Molecular and cellular biology of human TH17 cells in health and disease
人类 TH17 细胞在健康和疾病中的分子和细胞生物学
- 批准号:
171114 - 财政年份:2008
- 资助金额:
$ 38.18万 - 项目类别:
Operating Grants
Molecular and Cellular Biology in Mechanism of Body Fluid Homeostasis (Analysis of Inter- and Intra-Cellular Signalling in the Neurosecretory Cells)
体液稳态机制的分子和细胞生物学(神经分泌细胞的细胞间和细胞内信号传导分析)
- 批准号:
10470019 - 财政年份:1998
- 资助金额:
$ 38.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)