Predicting individual responses to treatment for alcohol use disorder.
预测个体对酒精使用障碍治疗的反应。
基本信息
- 批准号:10659811
- 负责人:
- 金额:$ 61.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-20 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Alcohol consumptionAlgorithmsAreaBehavior TherapyBehavioralBiological MarkersCaringCharacteristicsClientClinicalClinical DataClinical TrialsClinical Trials Cooperative GroupCommunicationComplexDataDiseaseEnsureGoalsHeavy DrinkingHeterogeneityIndividualIndividual DifferencesInterventionLiteratureMethodsNaltrexoneOutcomePatientsPharmaceutical PreparationsPharmacological TreatmentPrediction of Response to TherapyPrevention programProviderPsychosocial FactorPublic HealthPublishingRandomized, Controlled TrialsReactionRelapseResearchResearch PersonnelSamplingSelection for TreatmentsSpecific qualifier valueSymptomsTelephoneTestingTreatment EffectivenessTreatment EfficacyTreatment outcomeValidationWorkacamprosatealcohol abuse therapyalcohol interventionalcohol responsealcohol use disorderbehavior testclinical decision-makingclinical practicedesignexperienceimprovedimproved outcomeindividual responseindividualized medicinemachine learning algorithmmindfulness interventionnovel strategiespersonalized approachpersonalized medicinepharmacologicpredicting responseprediction algorithmpredictive modelingrandomized trialrandomized, clinical trialsrelapse preventionresponsesimulationtheoriestopiramatetreatment effecttreatment responseusability
项目摘要
Project summary:
Treatment of alcohol use disorder (AUD) is characterized by common relapse, heterogeneity in findings, and
many diverse interventions which show modest efficacy but fail to out perform each other. Research aiming to
explain the existing heterogeneity has found many significant moderators of treatment effects but few of these
have effect sizes large enough to indicate that they should be used in clinical practice for targeting treatments.
New personalized medicine methods which use machine learning algorithms to create predictions of
responses to AUD treatment which take into account multiple predictors show early promise. This research
This research uses data from 11 randomized clinical trials, 6 of behavioral relapse prevention programs and 5
of pharmacological interventions to reduce heavy drinking, to develop and cross validate individual predictions
of treatment effects on heavy drinking. We will also test the significance of individual differences for each
intervention and provide predictive intervals for individuals describing their expected response to different
interventions. The study also aims to test new approaches for combining data across multiple trials and for
improving precision of predictions in order to make the use of the predicted individual treatment effects (PITEs)
framework more useful in clinical practice.
At the end of this study there will be published algorithms for comparing predictions of treatment effects for
new individuals across multiple treatments, predictive intervals for those effects, and an assessment of internal
and, where possible, external validation of those predictions. The work emphasizes replicability of results
through cross-validation (which will itself be tested with simulations), a priori specification of predictive methods
and covariates, and use of an expert panel to make theory and literature informed decisions. This research is
designed to make personalized medicine for treatment of AUD usable in clinical practice through its integration
of theory, clinical experience brought by the clinical advisory board, and clear communication of results to a
clinical audience.
项目总结:
酒精使用障碍(AUD)的治疗特点是常见的复发,结果的异质性,以及
许多不同的干预措施显示出适度的疗效,但未能相互超越。研究的目的是
解释现有的异质性发现了许多显著的治疗效果调节因素,但很少有这些
具有足够大的效应大小,以表明它们应用于临床实践中的靶向治疗。
新的个性化医疗方法,使用机器学习算法来创建预测
考虑到多个预测因素,对AUD治疗的反应显示出早期的希望。这项研究
这项研究使用了11项随机临床试验,6项行为复发预防计划和5项行为复发预防计划的数据
减少大量饮酒的药物干预,开发和交叉验证个人预测
对酗酒的治疗效果。我们还将测试每个个体差异的重要性
干预并为个人描述他们对不同问题的预期反应提供预测间隔
干预措施。这项研究还旨在测试新的方法,将多个试验的数据结合起来,并
提高预测的精度,以便利用预测的个体治疗效果(PTITE)
框架在临床实践中更有用。
在这项研究结束时,将公布用于比较治疗效果预测的算法
多个治疗的新个体,这些效果的预测间隔,以及对内部
并在可能的情况下,对这些预测进行外部验证。这项工作强调结果的可复制性
通过交叉验证(这本身将通过模拟进行测试),预测方法的先验规范
和协变量,并使用专家小组作出理论和文献知情的决定。这项研究是
旨在通过集成使治疗AUD的个性化药物在临床实践中使用
理论,临床咨询委员会带来的临床经验,并将结果清楚地传达给
临床观众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M LEE VAN HORN其他文献
M LEE VAN HORN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M LEE VAN HORN', 18)}}的其他基金
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8105876 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8447584 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8829685 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8241960 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
9215752 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7487914 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8645660 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7659362 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7320069 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Effects of Classroom Practices and School Context
课堂实践和学校环境的影响
- 批准号:
6683427 - 财政年份:2003
- 资助金额:
$ 61.1万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 61.1万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 61.1万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 61.1万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 61.1万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 61.1万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 61.1万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 61.1万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 61.1万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 61.1万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 61.1万 - 项目类别:
Standard Grant














{{item.name}}会员




