Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
基本信息
- 批准号:10659170
- 负责人:
- 金额:$ 72.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAtlasesBedsBindingBiological AssayBrainCardiac MyocytesCatalogsCellsChromatinChromatin ModelingCodeCollaborationsCommunitiesComplexComputer softwareComputing MethodologiesDNA SequenceData CollectionDiseaseElementsEnhancersEthnic OriginFetal HeartGene ExpressionGene Expression RegulationGene FrequencyGenesGeneticGenetic ModelsGenetic VariationGenomeGenomicsGoalsHumanHuman GeneticsHuman GenomeIndividualMapsMethodsModelingMolecularMolecular DiseaseNucleotidesOutputPerformancePhenotypeQuantitative Trait LociRare DiseasesRegulator GenesRegulatory ElementReproducibilityResearchResearch PersonnelResolutionTestingTimeUntranslated RNAValidationVariantVisionbasecausal variantcell typecohortcombinatorialdata-driven modelde novo mutationdeep learningdeep learning modeldesigndisease phenotypedisorder riskdiverse dataexperimental studyfunctional genomicsgenetic variantgenome wide association studygenome-widehistone modificationhuman genomicsimprovedin silicolensmachine learning methodmachine learning modelmolecular phenotypeneural networknext generationopen sourceoutreachpolygenic risk scoreportabilitypredictive modelingprogramspromotersingle cell technologyspatiotemporalsyntaxtranscription factorworking group
项目摘要
ABSTRACT
A central challenge in human genomics is to interpret the regulatory functions of the noncoding genome, and to
identify and interpret variants with regulatory functions. In this project we plan to leverage recent advances in
experimental functional genomics (including single cell methods and high throughput perturbation methods)
alongside recent progress in deep learning models of gene regulation, to make fundamental progress on these
problems. We have assembled a team of investigators with diverse and complementary expertise – in deep
learning, single-cell genomics, cellular QTLs and GWAS, and high throughput validations – to build, test, and
implement predictive models for interpreting disease associations. Specifically, we aim to (1) Develop
interpretable base-resolution deep-learning models for regulatory sequences; (2) Predict and validate cell type-
specific effects of regulatory variants on molecular phenotypes and disease; (3) Collaborate with the IGVF
Consortium to build nucleotide-level regulatory maps. Our ultimate goal in this project will be to create a
nucleotide-resolution cis-regulatory map of the human genome to connect disease variants to functions and
phenotypes, in diverse cell types, states, and spatial contexts.
摘要
人类基因组学的一个核心挑战是解释非编码基因组的调控功能,
鉴定和解释具有调节功能的变体。在这个项目中,我们计划利用最新的进展,
实验功能基因组学(包括单细胞方法和高通量微扰方法)
除了最近在基因调控的深度学习模型方面取得的进展,
问题我们已经组建了一个具有不同和互补专业知识的调查团队-深入了解
学习,单细胞基因组学,细胞QTL和GWAS,以及高通量验证-构建,测试,
实现解释疾病关联的预测模型。具体而言,我们的目标是(1)发展
用于调控序列的可解释的基础分辨率深度学习模型;(2)预测和验证细胞类型-
调节变体对分子表型和疾病的特异性影响;(3)与IGVF合作
构建核苷酸水平调控图谱的联盟。我们在这个项目中的最终目标是创造一个
人类基因组的核苷酸解析顺式调控图谱,将疾病变异与功能联系起来,
表型,在不同的细胞类型,状态和空间背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anshul Kundaje其他文献
Anshul Kundaje的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anshul Kundaje', 18)}}的其他基金
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
- 批准号:
10744561 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10411262 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10842047 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10625529 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
- 批准号:
10571911 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
- 批准号:
10380573 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10297562 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10474459 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Multi-omic functional assessment of novel AD variants using high-throughput and single-cell technologies
使用高通量和单细胞技术对新型 AD 变体进行多组学功能评估
- 批准号:
10684210 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Multi-omic functional assessment of novel AD variants using high-throughput and single-cell technologies
使用高通量和单细胞技术对新型 AD 变体进行多组学功能评估
- 批准号:
10436207 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别: