Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
基本信息
- 批准号:10707985
- 负责人:
- 金额:$ 57.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcidosisAdjuvantAftercareArteriesBiological MarkersBiopsy SpecimenBiosensorCancer EtiologyCathetersCell DensityCellsCellularityCessation of lifeChemoembolizationClassificationClinicalClinical TreatmentCollaborationsCombination immunotherapyCombined Modality TherapyData PoolingDecision MakingDevelopmentEnvironmentGoalsGrantGraphGuidelinesHabitatsHepatocyteHumanImageImage AnalysisImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunobiologyImmunologicsImmunotherapyIndividualInterventionJointsLearningLesionLiverLiver neoplasmsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of liverManualsMapsMeasurementMeasuresMedical OncologyMetabolicMetabolismMethodsModalityModelingMultimodal ImagingNeoadjuvant TherapyNew ZealandOryctolagus cuniculusOutcome AssessmentPalliative CarePathologyPatient CarePatientsPatternPhasePhenotypePrimary Malignant Neoplasm of LiverPrimary carcinoma of the liver cellsRecurrenceResolutionStandardizationStructureTherapeuticTimeTissuesTranslatingTumor VolumeWestern WorldX-Ray Computed Tomographyautomated segmentationbiomarker developmentcancer therapychemotherapyclinical decision-makingclinical outcome assessmentcohortcone-beam computed tomographycontrast enhancedconvolutional neural networkdeep learningdesignextracellularfeedinggraph neural networkimage guidedimage registrationimaging biomarkerimaging informaticsimmune activationimprovedin vivoinnovationintrahepatic cancerischemic injurylearning strategyliver cancer modelmachine learning methodmagnetic resonance imaging biomarkermagnetic resonance spectroscopic imagingmetabolic imagingminimally invasiveneoplastic cellnon-invasive imagingnovelnovel strategiesoutcome predictionpermissivenesspre-clinicalpredicting responseradiomicsrandom forestrecruitresponsespatiotemporalspectroscopic imagingtherapy outcometreatment strategytreatment stratificationtumortumor microenvironmenttumor progression
项目摘要
Project Summary
Liver cancer is the fourth most common cause of cancer-related death worldwide. Hepatocellular carcinoma
(HCC) is the most common type of primary liver cancer and is on the rise in the western world. Minimally inva-
sive, catheter-based locoregional therapies (LRT), such as transarterial chemoembolization (TACE), are now the
mainstay treatments for intermediate to advanced stage HCC and are included in all management guidelines.
TACE is a palliative therapy that prolongs survival by controlling intra-hepatic tumor progression via targeted is-
chemic injury, paired with the delivery of highly concentrated chemotherapy into the tumor-feeding artery. More
recently, systemic immunotherapies (IMT), specifically immune checkpoint inhibitors, have emerged as an im-
portant treatment option for HCC to boost the body's own immune response against the tumor. While IMT is
promising for many cancers, only 15-30% of HCC patients respond to this type of therapy. TACE is increasingly
used in conjunction with IMT, both in neoadjuvant and adjuvant scenarios. Recent efforts show that TACE can
dramatically alter the tumor microenvironment (TME) to become more immune-permissive, enabling more ef-
fective immune cell recruitment against the tumor through IMT. Thus, the LRT+IMT combination is a likely path
forward for HCC treatment strategies. In this context, there is an urgent and unmet clinical need for robust, non-
invasive quantitative biomarkers to help guide therapeutic decision making and assess therapeutic outcome early
during treatment. Previously, our team developed clinical and preclinical advanced imaging, image analysis, and
imaging biomarkers to study, guide and assess HCC treatment with TACE alone using multiparameter magnetic
resonance imaging (mpMRI) and magnetic resonance spectroscopic imaging (MRSI). We developed random
forests and convolutional neural networks for liver segmentation, tissue classification and nonrigid registration to
map these results into the clinical treatment environment. Using graph convolutional neural networks, we pre-
dicted and assessed therapeutic outcomes. In a rabbit model of liver cancer (VX2), using Biosensor Imaging of
Redundant Deviation in Shifts (BIRDS), we successfully characterized the metabolic state of the TME with respect
to extracellular acidosis, before and after TACE. We now propose to develop robust quantitative biomarkers for
combined LRT+IMT assessment and outcome prediction in humans. We will develop novel image analysis (Joint
Domain Learning with Structure-Consistent Embedding by Disentanglement) and characterize the changing TME
over the course of LRT+IMT by deriving information from longitudinal mpMRI (with liver-specific contrast) and/or
multiphase computed tomography (mpCT), learning across modalities via domain adaptation. Since LRT+IMT is
expected to reduce extracellular acidosis in treated liver tumors, we propose to develop high-resolution advanced
BIRDS in the rabbit VX2 model with novel machine learning to spatially characterize changes in extracellular
acidosis due to LRT+IMT, enabling focus on the peritumoral region where immune activation is most enhanced.
These developments will ultimately facilitate personalized HCC treatment stratification.
项目摘要
肝癌是全球与癌症相关死亡的第四大原因。肝细胞癌
(HCC)是原发性肝癌的最常见类型,在西方世界正在上升。最小
Sive,基于导管的局部疗法(LRT),例如跨性化学栓塞(TACE),现在是
中级至高级阶段HCC的主要治疗方法,并包括在所有管理指南中。
TACE是一种姑息治疗
化学损伤与将高度浓缩化疗的递送到肿瘤喂养动脉中配对。更多的
最近,系统性免疫疗法(IMT)(特别是免疫检查点抑制剂)已成为IM-
HCC的便携式治疗选择可以增强人体对肿瘤的免疫反应。而IMT是
对于许多癌症而言,只有15-30%的HCC患者对这种类型的治疗做出反应。 Tace越来越多
与IMT一起使用,包括新辅助和调整场景。最近的努力表明Tace可以
动态改变肿瘤微环境(TME)以变得更加免疫性,从而使更多的EF-
通过IMT针对肿瘤的人体免疫细胞募集。那就是LRT+IMT组合是一条可能的路径
在这种情况下,紧急且未满足的临床需求是可靠的,非 -
侵入性定量生物标志物可帮助指导治疗决策和评估治疗结果
治疗期间。以前,我们的团队开发了临床和临床前的高级成像,图像分析和
对生物标志物进行成像以研究,指导和评估HCC治疗,仅使用多参数磁磁
共振成像(MPMRI)和磁共振光谱成像(MRSI)。我们发展了随机
森林和卷积神经网络,用于肝分割,组织分类和非辅助注册
将这些结果映射到临床治疗环境中。使用图形卷积神经网络,我们预先
对治疗结果进行定用和评估。在肝癌(VX2)的兔模型中,使用生物传感器成像
轮班(鸟)的冗余偏差,我们成功地表征了TME的代谢状态
在TACE之前和之后进行细胞外酸中毒。现在,我们建议开发出强大的定量生物标志物
LRT+IMT评估和人类结果预测的结合。我们将开发新的图像分析(关节
域学习与结构一致的嵌入通过分离)并表征了变化的TME
在LRT+IMT的过程中,通过从纵向mpmri(带有肝脏特异性对比度)和/或
多相计算机断层扫描(MPCT),通过域的适应性跨模态学习。由于LRT+IMT为
预计将减少治疗肝肿瘤中的细胞外酸中毒,我们建议发展高分辨率晚期
兔子VX2模型中的鸟类具有新颖的机器学习,以空间表征细胞外变化
酸中毒是由于LRT+IMT引起的,因此将重点放在免疫激活最大的周围区域。
这些发展最终将促进个性化的HCC治疗层。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation.
渐进学习与迁移学习的结合:在多部位前列腺 MRI 分割中的应用。
- DOI:10.1007/978-3-031-18523-6_1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:You,Chenyu;Xiang,Jinlin;Su,Kun;Zhang,Xiaoran;Dong,Siyuan;Onofrey,John;Staib,Lawrence;Duncan,JamesS
- 通讯作者:Duncan,JamesS
Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework.
使用基于自动上下文的深度神经网络和多阶段训练框架进行肝脏组织分类。
- DOI:10.1007/978-3-030-00500-9_7
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Zhang,Fan;Yang,Junlin;Nezami,Nariman;Laage-Gaupp,Fabian;Chapiro,Julius;DeLin,Ming;Duncan,James
- 通讯作者:Duncan,James
Lipiodol as an intra-procedural imaging biomarker for liver tumor response to transarterial chemoembolization: Post-hoc analysis of a prospective clinical trial.
- DOI:10.1016/j.clinimag.2021.05.007
- 发表时间:2021-10
- 期刊:
- 影响因子:2.1
- 作者:Letzen BS;Malpani R;Miszczuk M;de Ruiter QMB;Petty CW;Rexha I;Nezami N;Laage-Gaupp F;Lin M;Schlachter TR;Chapiro J
- 通讯作者:Chapiro J
Liver tissue classification in patients with hepatocellular carcinoma by fusing structured and rotationally invariant context representation.
通过融合结构化和旋转不变上下文表示对肝细胞癌患者的肝组织进行分类。
- DOI:10.1007/978-3-319-66179-7_10
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Treilhard,John;Smolka,Susanne;Staib,Lawrence;Chapiro,Julius;Lin,MingDe;Shakirin,Georgy;Duncan,James
- 通讯作者:Duncan,James
Science to Practice: Killing Dormant Cells-Is Targeting Autophagy the Key to Complete Tumor Response in Transarterial Chemoembolization?
- DOI:10.1148/radiol.2017170358
- 发表时间:2017-05
- 期刊:
- 影响因子:19.7
- 作者:L. Savic;J. Chapiro;J. Geschwind
- 通讯作者:L. Savic;J. Chapiro;J. Geschwind
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES S DUNCAN其他文献
JAMES S DUNCAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
- 批准号:
9982672 - 财政年份:2016
- 资助金额:
$ 57.63万 - 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
- 批准号:
9890853 - 财政年份:2014
- 资助金额:
$ 57.63万 - 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
- 批准号:
10376296 - 财政年份:2014
- 资助金额:
$ 57.63万 - 项目类别:
Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography
用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析
- 批准号:
8614454 - 财政年份:2014
- 资助金额:
$ 57.63万 - 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
- 批准号:
10436344 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
- 批准号:
8725724 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
- 批准号:
10666518 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
- 批准号:
8145571 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
- 批准号:
8526506 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
- 批准号:
8795003 - 财政年份:2010
- 资助金额:
$ 57.63万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Sonodynamic therapy using MRI-guided focused ultrasound in combination with 5-aminolevulinic acid to treat recurrent glioblastoma multiforme
使用 MRI 引导聚焦超声联合 5-氨基乙酰丙酸的声动力疗法治疗复发性多形性胶质母细胞瘤
- 批准号:
10699858 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
- 批准号:
10677984 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Targeting DKK1 with a DNA Vaccine to Prevent Development of Multiple Myeloma
用 DNA 疫苗靶向 DKK1 预防多发性骨髓瘤的发展
- 批准号:
10874135 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别:
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 57.63万 - 项目类别: