q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy

q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物

基本信息

  • 批准号:
    10376296
  • 负责人:
  • 金额:
    $ 78.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-18 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Ischemic heart disease remains the top cause of death in the world. Acute myocardial infarction (MI) causes regional dysfunction which places remote areas of the heart at a mechanical disadvantage resulting in long term adverse left ventricular (LV) remodeling and complicating congestive heart failure (CHF). The course of MI and post-MI remodeling is complex and includes vascular and myocellular injury, acute and chronic inflammation, alterations of the extracellular matrix (ECM) and angiogenesis. Stress echocardiography is a clinically established, cost-effective technique for detecting and characterizing coronary artery disease and myocardial injury by imaging the LV at rest and after either exercise or pharmacologically-induced stress to reveal ischemia and/or scar. In our previous effort on this project, we developed quantitative 3D differential deformation measures for stress echocardiography from 4DE-derived LV strain maps taken at rest and after dobutamine stress. These measures can localize and quantify the extent and severity of LV myocardial injury and reveal ischemic regions. We now propose that improved versions of these same measures can be used for both targeting of therapy and outcomes assessment in the treatment of adverse local myocardial remodeling following MI. We choose a particular up and coming therapeutic strategy as an exemplar: the local delivery of injectable hydrogels within the MI region that are intended to alter the biomechanical properties of the LV myocardium, as well as inflammation, and thereby help to minimize adverse remodeling. Our new, robust approach for estimating improved dense displacement and differential deformation measures is based on an innovative data-driven, deep feed-forward, neural network architecture that employs domain adaptation between data from labeled, carefully-constructed synthetic models of physiology and echocardiographic image formation (i.e. with ground truth), and data from unlabeled noisy in vivo porcine or human echocardiography (missing or very limited ground truth). Training is based on tens of thousands of four-dimensional (4D) image-derived patches from these two domains, initially based on displacements derived separately from shape-based processing of conventional B-mode data and block-mode, speckle-tracked processing of raw radio-frequency (RF) data; and later based on learning directly from B-mode and RF image intensity information. After non-rigid registration of rest and stress 4DE image sequences, quantitative 4D differential deformation parameters will be derived from porcine and human echocardiographic test data. These parameters will be derived at baseline, and at several timepoints after delivery of injectable hydrogels into the MI region. The ability of the differential deformation parameters derived from 4D stress echocardiography to guide local delivery of injectable hydrogels in a MI region and assess/predict outcomes will then be determined in a hybrid acute/chronic porcine model of MI and post-MI remodeling. The technique will be translated to humans and evaluated by measuring the reproducibility and the relationship to remodeling of our new robust, deep learning-based differential deformation parameters in a small cohort of subjects.
项目总结/摘要 缺血性心脏病仍然是世界上最主要的死亡原因。急性心肌梗死(MI)原因 局部功能障碍,使心脏的偏远区域处于机械不利地位,导致长期 不利的左心室(LV)重塑和并发的充血性心力衰竭(CHF)。MI的过程和 MI后重塑是复杂的,包括血管和肌细胞损伤、急性和慢性炎症、细胞外基质(ECM)的改变和血管生成。负荷超声心动图是临床上建立的, 通过在静息和运动或药物诱导的应激后对LV成像以显示缺血和/或瘢痕,检测和表征冠状动脉疾病和心肌损伤的成本效益技术。 在我们之前的工作中,我们开发了定量的三维差异变形措施, 静息和多巴酚丁胺负荷后4DE衍生LV应变图的超声心动图。这些措施 可以定位和量化左室心肌损伤的范围和严重程度,并显示缺血区域。我们现在 我建议,这些相同措施的改进版本可以用于治疗和结果的靶向 评估MI后不良局部心肌重塑的治疗。我们选择一个特定的向上, 即将到来的治疗策略作为范例:在MI区域内局部递送可注射水凝胶, 旨在改变LV心肌的生物力学特性以及炎症,从而 有助于减少不良重塑。我们的新的,强大的方法来估计改进的密集位移 和差异变形措施是基于一个创新的数据驱动,深度前馈,神经网络 一种架构,在来自标记的、精心构建的合成模型的数据之间采用域自适应 生理学和超声心动图图像形成(即具有地面实况)的数据,以及来自未标记噪声的数据, 体内猪或人超声心动图(缺失或非常有限的基础事实)。训练是基于来自这两个域的数万个四维(4D)图像导出的块,最初基于位移 分别从传统B模式数据和块模式的基于形状的处理中导出,斑点跟踪 原始射频(RF)数据的处理;随后基于直接从B模式和RF图像中学习 强度信息。在对静止和应力4DE图像序列进行非刚性配准后,将从猪和人类超声心动图测试数据中推导出定量4D微分变形参数。这些 参数将在基线时以及在将可注射水凝胶递送到患者体内后的几个时间点获得。 MI区域。从4D负荷超声心动图导出的微分变形参数的能力, 指导MI区域的可注射水凝胶局部输送,然后确定评估/预测结局 在MI和MI后重塑的混合急性/慢性猪模型中。该技术将被翻译到人类,并通过测量可重复性和与我们新的强大的,深的重建的关系进行评估。 基于学习的微分变形参数在一小群受试者。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised Motion Tracking of Left Ventricle in Echocardiography.
Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds.
  • DOI:
    10.1016/j.pacs.2014.12.001
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Arnal B;Perez C;Wei CW;Xia J;Lombardo M;Pelivanov I;Matula TJ;Pozzo LD;O'Donnell M
  • 通讯作者:
    O'Donnell M
Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging.
  • DOI:
    10.1007/s11886-017-0843-0
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Boutagy NE;Sinusas AJ
  • 通讯作者:
    Sinusas AJ
Optimization of the laser irradiation pattern in a high frame rate integrated photoacoustic / ultrasound (PAUS) imaging system.
Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.
使用与球面聚焦传感器耦合的复曲面透镜进行辐射力应用的复曲面聚焦。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES S DUNCAN其他文献

JAMES S DUNCAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金

Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
  • 批准号:
    10707985
  • 财政年份:
    2016
  • 资助金额:
    $ 78.65万
  • 项目类别:
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
  • 批准号:
    9982672
  • 财政年份:
    2016
  • 资助金额:
    $ 78.65万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    9890853
  • 财政年份:
    2014
  • 资助金额:
    $ 78.65万
  • 项目类别:
Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography
用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析
  • 批准号:
    8614454
  • 财政年份:
    2014
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10436344
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8725724
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10666518
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8145571
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8526506
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8795003
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:

相似海外基金

3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
  • 批准号:
    NE/Y003586/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Training Grant
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
  • 批准号:
    23K16022
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
  • 批准号:
    NE/X009262/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
  • 批准号:
    23KJ1570
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
  • 批准号:
    10739431
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
  • 批准号:
    BB/W020335/1
  • 财政年份:
    2022
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
  • 批准号:
    RGPIN-2017-04293
  • 财政年份:
    2021
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
  • 批准号:
    465594799
  • 财政年份:
    2021
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Major Research Instrumentation
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
  • 批准号:
    RGPIN-2017-04293
  • 财政年份:
    2020
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Discovery Grants Program - Individual
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
  • 批准号:
    20K21899
  • 财政年份:
    2020
  • 资助金额:
    $ 78.65万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了