q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy

q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物

基本信息

  • 批准号:
    10376296
  • 负责人:
  • 金额:
    $ 78.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-18 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Ischemic heart disease remains the top cause of death in the world. Acute myocardial infarction (MI) causes regional dysfunction which places remote areas of the heart at a mechanical disadvantage resulting in long term adverse left ventricular (LV) remodeling and complicating congestive heart failure (CHF). The course of MI and post-MI remodeling is complex and includes vascular and myocellular injury, acute and chronic inflammation, alterations of the extracellular matrix (ECM) and angiogenesis. Stress echocardiography is a clinically established, cost-effective technique for detecting and characterizing coronary artery disease and myocardial injury by imaging the LV at rest and after either exercise or pharmacologically-induced stress to reveal ischemia and/or scar. In our previous effort on this project, we developed quantitative 3D differential deformation measures for stress echocardiography from 4DE-derived LV strain maps taken at rest and after dobutamine stress. These measures can localize and quantify the extent and severity of LV myocardial injury and reveal ischemic regions. We now propose that improved versions of these same measures can be used for both targeting of therapy and outcomes assessment in the treatment of adverse local myocardial remodeling following MI. We choose a particular up and coming therapeutic strategy as an exemplar: the local delivery of injectable hydrogels within the MI region that are intended to alter the biomechanical properties of the LV myocardium, as well as inflammation, and thereby help to minimize adverse remodeling. Our new, robust approach for estimating improved dense displacement and differential deformation measures is based on an innovative data-driven, deep feed-forward, neural network architecture that employs domain adaptation between data from labeled, carefully-constructed synthetic models of physiology and echocardiographic image formation (i.e. with ground truth), and data from unlabeled noisy in vivo porcine or human echocardiography (missing or very limited ground truth). Training is based on tens of thousands of four-dimensional (4D) image-derived patches from these two domains, initially based on displacements derived separately from shape-based processing of conventional B-mode data and block-mode, speckle-tracked processing of raw radio-frequency (RF) data; and later based on learning directly from B-mode and RF image intensity information. After non-rigid registration of rest and stress 4DE image sequences, quantitative 4D differential deformation parameters will be derived from porcine and human echocardiographic test data. These parameters will be derived at baseline, and at several timepoints after delivery of injectable hydrogels into the MI region. The ability of the differential deformation parameters derived from 4D stress echocardiography to guide local delivery of injectable hydrogels in a MI region and assess/predict outcomes will then be determined in a hybrid acute/chronic porcine model of MI and post-MI remodeling. The technique will be translated to humans and evaluated by measuring the reproducibility and the relationship to remodeling of our new robust, deep learning-based differential deformation parameters in a small cohort of subjects.
项目摘要/摘要 缺血性心脏病仍然是世界上死亡的主要原因。急性心肌梗塞(MI)原因 区域功能障碍将心脏偏远区域置于机械劣势,从而长期 不良左心室(LV)重塑和使充血性心力衰竭(CHF)复杂化。 Mi和 MI后重塑是复杂的,包括血管和心肌损伤,急性和慢性炎症,细胞外基质(ECM)的改变以及血管生成。压力超声心动图是临床上建立的, 具有成本效益的技术,可通过在休息时和运动或药理诱导的压力来检测和表征冠状动脉疾病和心肌损伤,以揭示缺血和/或疤痕。 在我们以前在该项目上的努力中,我们为压力制定了定量的3D差异变形度量 在静止和多丁胺胁迫后拍摄的4DE衍生的LV应变图的超声心动图。这些措施 可以定位并量化LV心肌损伤的程度和严重程度,并揭示缺血区域。我们现在 提出这些相同措施的改进版本可以用于靶向治疗和结果 MI后,评估不良局部心肌重塑。我们选择一个特定的 作为典范的即将到来的治疗策略:在MI区域内局部输送可注射水凝胶 旨在改变LV心肌和炎症的生物力学特性,从而 帮助最大程度地减少不良重塑。我们的新的,可靠的方法来估计改进的量流 差异变形措施基于创新的数据驱动,深馈,神经网络 从标记的,精心构造的合成模型的数据之间采用域适应的体系结构 生理学和超声心动图图像形成(即具有地面真相),以及来自未标记嘈杂的数据 体内猪或人类超声心动图(缺失或非常有限的地面真相)。培训是基于数万个来自这两个域的四维(4D)图像衍生的贴片,最初基于位移 从传统的B模式数据和块模式的基于形状的处理分别得出,斑点跟踪 处理原始射频(RF)数据的处理;后来基于直接从B模式和RF图像学习 强度信息。在对休息和应力4DE图像序列进行非刚性注册后,定量4D差异变形参数将源自猪和人超声心动图测试数据。这些 参数将在基线和将注射水凝胶传递到该的几个时间点上得出 MI地区。从4D应力超声心动图导致的差分变形参数到 然后将确定在MI区域中注射水凝胶的局部输送,然后确定评估/预测结果 在MI和MI重塑后的杂化急性/慢性猪模型中。该技术将转化为人类,并通过测量重塑我们新的健壮,深层重塑的可重复性和关系来进行评估 一小部分受试者中基于学习的差异变形参数。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised Motion Tracking of Left Ventricle in Echocardiography.
Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds.
  • DOI:
    10.1016/j.pacs.2014.12.001
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Arnal B;Perez C;Wei CW;Xia J;Lombardo M;Pelivanov I;Matula TJ;Pozzo LD;O'Donnell M
  • 通讯作者:
    O'Donnell M
Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging.
  • DOI:
    10.1007/s11886-017-0843-0
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Boutagy NE;Sinusas AJ
  • 通讯作者:
    Sinusas AJ
Optimization of the laser irradiation pattern in a high frame rate integrated photoacoustic / ultrasound (PAUS) imaging system.
Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.
使用与球面聚焦传感器耦合的复曲面透镜进行辐射力应用的复曲面聚焦。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES S DUNCAN其他文献

JAMES S DUNCAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金

Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
  • 批准号:
    10707985
  • 财政年份:
    2016
  • 资助金额:
    $ 78.65万
  • 项目类别:
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
  • 批准号:
    9982672
  • 财政年份:
    2016
  • 资助金额:
    $ 78.65万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    9890853
  • 财政年份:
    2014
  • 资助金额:
    $ 78.65万
  • 项目类别:
Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography
用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析
  • 批准号:
    8614454
  • 财政年份:
    2014
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10436344
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8725724
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10666518
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8145571
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8526506
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8795003
  • 财政年份:
    2010
  • 资助金额:
    $ 78.65万
  • 项目类别:

相似国自然基金

融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
  • 批准号:
    62075189
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
  • 批准号:
    61906133
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
  • 批准号:
    31800305
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
  • 批准号:
    81871437
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
  • 批准号:
    41674090
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
  • 批准号:
    10716472
  • 财政年份:
    2023
  • 资助金额:
    $ 78.65万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10672880
  • 财政年份:
    2022
  • 资助金额:
    $ 78.65万
  • 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
  • 批准号:
    10343329
  • 财政年份:
    2022
  • 资助金额:
    $ 78.65万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10687912
  • 财政年份:
    2020
  • 资助金额:
    $ 78.65万
  • 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
  • 批准号:
    10471925
  • 财政年份:
    2020
  • 资助金额:
    $ 78.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了